OpenSuSE Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
x SuSE Linux 13.1-RELEASE x
x SuSE Linux 13.1-RELEASEx
FCNTL(2)                   Linux Programmer's Manual                  FCNTL(2)

NAME
       fcntl - manipulate file descriptor

SYNOPSIS
       #include <unistd.h>
       #include <fcntl.h>

       int fcntl(int fd, int cmd, ... /* arg */ );

DESCRIPTION
       fcntl() performs one of the operations described below on the open file
       descriptor fd.  The operation is determined by cmd.

       fcntl() can take an optional third argument.  Whether or not this argu-
       ment  is  required is determined by cmd.  The required argument type is
       indicated in parentheses after  each  cmd  name  (in  most  cases,  the
       required type is int, and we identify the argument using the name arg),
       or void is specified if the argument is not required.

       Certain of the operations below are supported only since  a  particular
       Linux  kernel  version.   The  preferred method of checking whether the
       host kernel supports a particular operation is to invoke  fcntl()  with
       the  desired  cmd value and then test whether the call failed with EIN-
       VAL, indicating that the kernel does not recognize this value.

   Duplicating a file descriptor
       F_DUPFD (int)
              Find the lowest numbered available file descriptor greater  than
              or  equal to arg and make it be a copy of fd.  This is different
              from dup2(2), which uses exactly the descriptor specified.

              On success, the new descriptor is returned.

              See dup(2) for further details.

       F_DUPFD_CLOEXEC (int; since Linux 2.6.24)
              As for F_DUPFD, but additionally set the close-on-exec flag  for
              the  duplicate  descriptor.  Specifying this flag permits a pro-
              gram to avoid an additional fcntl() F_SETFD operation to set the
              FD_CLOEXEC flag.  For an explanation of why this flag is useful,
              see the description of O_CLOEXEC in open(2).

   File descriptor flags
       The following commands manipulate the  flags  associated  with  a  file
       descriptor.   Currently, only one such flag is defined: FD_CLOEXEC, the
       close-on-exec flag.  If the FD_CLOEXEC bit is 0,  the  file  descriptor
       will remain open across an execve(2), otherwise it will be closed.

       F_GETFD (void)
              Read the file descriptor flags; arg is ignored.

       F_SETFD (int)
              Set the file descriptor flags to the value specified by arg.

       In  multithreaded  programs, using fcntl() F_SETFD to set the close-on-
       exec flag at the same time as another thread performs  a  fork(2)  plus
       execve(2)  is  vulnerable  to a race condition that may unintentionally
       leak the file descriptor to the program executed in the child  process.
       See  the  discussion of the O_CLOEXEC flag in open(2) for details and a
       remedy to the problem.

   File status flags
       Each open file description has certain associated  status  flags,  ini-
       tialized  by open(2) and possibly modified by fcntl().  Duplicated file
       descriptors (made with dup(2), fcntl(F_DUPFD), fork(2), etc.) refer  to
       the  same  open  file  description, and thus share the same file status
       flags.

       The file status flags and their semantics are described in open(2).

       F_GETFL (void)
              Get the file access mode and  the  file  status  flags;  arg  is
              ignored.

       F_SETFL (int)
              Set  the  file status flags to the value specified by arg.  File
              access mode (O_RDONLY, O_WRONLY, O_RDWR) and file creation flags
              (i.e.,  O_CREAT,  O_EXCL, O_NOCTTY, O_TRUNC) in arg are ignored.
              On Linux this command can change  only  the  O_APPEND,  O_ASYNC,
              O_DIRECT,  O_NOATIME,  and O_NONBLOCK flags.  It is not possible
              to change the O_DSYNC and O_SYNC flags; see BUGS, below.

   Advisory record locking
       Linux implements traditional ("process-associated") UNIX record  locks,
       as standardized by POSIX.  For a Linux-specific alternative with better
       semantics, see the discussion of open file description locks below.

       F_SETLK, F_SETLKW, and F_GETLK are used to acquire, release,  and  test
       for  the existence of record locks (also known as byte-range, file-seg-
       ment, or file-region locks).  The third argument, lock, is a pointer to
       a  structure  that  has  at  least the following fields (in unspecified
       order).

           struct flock {
               ...
               short l_type;    /* Type of lock: F_RDLCK,
                                   F_WRLCK, F_UNLCK */
               short l_whence;  /* How to interpret l_start:
                                   SEEK_SET, SEEK_CUR, SEEK_END */
               off_t l_start;   /* Starting offset for lock */
               off_t l_len;     /* Number of bytes to lock */
               pid_t l_pid;     /* PID of process blocking our lock
                                   (set by F_GETLK and F_OFD_GETLK) */
               ...
           };

       The l_whence, l_start, and l_len fields of this structure  specify  the
       range  of bytes we wish to lock.  Bytes past the end of the file may be
       locked, but not bytes before the start of the file.

       l_start is the starting offset for the lock, and is  interpreted  rela-
       tive  to  either:  the start of the file (if l_whence is SEEK_SET); the
       current file offset (if l_whence is SEEK_CUR); or the end of  the  file
       (if  l_whence  is  SEEK_END).  In the final two cases, l_start can be a
       negative number provided the offset does not lie before  the  start  of
       the file.

       l_len  specifies  the  number of bytes to be locked.  If l_len is posi-
       tive, then the range to be  locked  covers  bytes  l_start  up  to  and
       including  l_start+l_len-1.   Specifying  0  for  l_len has the special
       meaning: lock all bytes starting at the location specified by  l_whence
       and  l_start  through  to the end of file, no matter how large the file
       grows.

       POSIX.1-2001 allows (but does not require) an implementation to support
       a negative l_len value; if l_len is negative, the interval described by
       lock covers bytes l_start+l_len up to and including l_start-1.  This is
       supported by Linux since kernel versions 2.4.21 and 2.5.49.

       The  l_type  field  can  be  used  to place a read (F_RDLCK) or a write
       (F_WRLCK) lock on a file.  Any number of processes may hold a read lock
       (shared  lock)  on a file region, but only one process may hold a write
       lock (exclusive lock).  An exclusive lock  excludes  all  other  locks,
       both  shared and exclusive.  A single process can hold only one type of
       lock on a file region; if a new lock is applied  to  an  already-locked
       region,  then  the  existing  lock  is  converted to the new lock type.
       (Such conversions may involve splitting, shrinking, or coalescing  with
       an  existing  lock if the byte range specified by the new lock does not
       precisely coincide with the range of the existing lock.)

       F_SETLK (struct flock *)
              Acquire a lock (when l_type is F_RDLCK or F_WRLCK) or release  a
              lock  (when  l_type  is  F_UNLCK)  on the bytes specified by the
              l_whence, l_start, and l_len fields of lock.  If  a  conflicting
              lock  is  held by another process, this call returns -1 and sets
              errno to EACCES or EAGAIN.  (The error  returned  in  this  case
              differs  across  implementations,  so  POSIX requires a portable
              application to check for both errors.)

       F_SETLKW (struct flock *)
              As for F_SETLK, but if a conflicting lock is held on  the  file,
              then  wait  for that lock to be released.  If a signal is caught
              while waiting, then the call is interrupted and (after the  sig-
              nal handler has returned) returns immediately (with return value
              -1 and errno set to EINTR; see signal(7)).

       F_GETLK (struct flock *)
              On input to this call, lock describes a lock we  would  like  to
              place  on  the  file.  If the lock could be placed, fcntl() does
              not actually place it, but returns F_UNLCK in the  l_type  field
              of lock and leaves the other fields of the structure unchanged.

              If  one or more incompatible locks would prevent this lock being
              placed, then fcntl() returns details about one of those locks in
              the l_type, l_whence, l_start, and l_len fields of lock.  If the
              conflicting lock is a  traditional  (process-associated)  record
              lock,  then  the  l_pid  field  is set to the PID of the process
              holding that lock.  If the conflicting  lock  is  an  open  file
              description  lock,  then  l_pid  is  set  to  -1.  Note that the
              returned information may already be out of date by the time  the
              caller inspects it.

       In  order  to place a read lock, fd must be open for reading.  In order
       to place a write lock, fd must be open  for  writing.   To  place  both
       types of lock, open a file read-write.

       When placing locks with F_SETLKW, the kernel detects deadlocks, whereby
       two or more processes have their  lock  requests  mutually  blocked  by
       locks  held  by  the  other  processes.  For example, suppose process A
       holds a write lock on byte 100 of a file, and process B holds  a  write
       lock  on  byte  200.   If  each  process then attempts to lock the byte
       already locked by the other process using F_SETLKW, then, without dead-
       lock detection, both processes would remain blocked indefinitely.  When
       the kernel detects such deadlocks, it causes one of the  blocking  lock
       requests  to  immediately  fail  with the error EDEADLK; an application
       that encounters such an error should release some of its locks to allow
       other  applications  to proceed before attempting regain the locks that
       it requires.  Circular deadlocks involving more than two processes  are
       also  detected.   Note, however, that there are limitations to the ker-
       nel's deadlock-detection algorithm; see BUGS.

       As well as being removed by an explicit F_UNLCK, record locks are auto-
       matically released when the process terminates.

       Record  locks are not inherited by a child created via fork(2), but are
       preserved across an execve(2).

       Because of the buffering performed by the stdio(3) library, the use  of
       record  locking  with  routines  in that package should be avoided; use
       read(2) and write(2) instead.

       The record locks  described  above  are  associated  with  the  process
       (unlike  the  open  file  description locks described below).  This has
       some unfortunate consequences:

       *  If a process closes any file descriptor referring to  a  file,  then
          all  of the process's locks on that file are released, regardless of
          the file descriptor(s) on which the locks were  obtained.   This  is
          bad:  it  means  that a process can lose its locks on a file such as
          /etc/passwd or /etc/mtab when for some  reason  a  library  function
          decides to open, read, and close the same file.

       *  The  threads  in  a  process  share locks.  In other words, a multi-
          threaded program can't use record locking  to  ensure  that  threads
          don't simultaneously access the same region of a file.

       Open file description locks solve both of these problems.

   Open file description locks (non-POSIX)
       Open  file description locks are advisory byte-range locks whose opera-
       tion is in most respects identical  to  the  traditional  record  locks
       described above.  This lock type is Linux-specific, and available since
       Linux 3.15.  For an explanation of open file descriptions, see open(2)

       The principal difference between the two lock  types  is  that  whereas
       traditional  record  locks  are  associated  with  a process, open file
       description locks are associated with  the  open  file  description  on
       which  they are acquired, much like locks acquired with flock(2).  Con-
       sequently (and unlike traditional advisory  record  locks),  open  file
       description  locks  are  inherited  across  fork(2)  (and clone(2) with
       CLONE_FILES), and are only automatically released on the last close  of
       the  open  file  description, instead of being released on any close of
       the file.

       Open file description locks always  conflict  with  traditional  record
       locks, even when they are acquired by the same process on the same file
       descriptor.

       Open file description locks placed via the same open  file  description
       (i.e.,  via  the  same  file descriptor, or via a duplicate of the file
       descriptor created by fork(2), dup(2), fcntl(2) F_DUPFD, and so on) are
       always compatible: if a new lock is placed on an already locked region,
       then the existing lock is converted to the new lock type.   (Such  con-
       versions  may  result  in  splitting,  shrinking, or coalescing with an
       existing lock as discussed above.)

       On the other hand, open file description locks may conflict  with  each
       other  when  they  are  acquired  via different open file descriptions.
       Thus, the threads in a multithreaded program can use open file descrip-
       tion locks to synchronize access to a file region by having each thread
       perform its own open(2) on the file and applying locks via the  result-
       ing file descriptor.

       As  with  traditional  advisory  locks,  the third argument to fcntl(),
       lock, is a pointer to an flock structure.  By contrast with traditional
       record  locks,  the  l_pid  field of that structure must be set to zero
       when using the commands described below.

       The commands for working with open file description locks are analogous
       to those used with traditional locks:

       F_OFD_SETLK (struct flock *)
              Acquire an open file description lock (when l_type is F_RDLCK or
              F_WRLCK) or release an open file description lock  (when  l_type
              is F_UNLCK) on the bytes specified by the l_whence, l_start, and
              l_len fields of lock.  If a conflicting lock is held by  another
              process, this call returns -1 and sets errno to EAGAIN.

       F_OFD_SETLKW (struct flock *)
              As  for  F_OFD_SETLK,  but  if a conflicting lock is held on the
              file, then wait for that lock to be released.  If  a  signal  is
              caught  while  waiting,  then the call is interrupted and (after
              the signal  handler  has  returned)  returns  immediately  (with
              return value -1 and errno set to EINTR; see signal(7)).

       F_OFD_GETLK (struct flock *)
              On  input  to this call, lock describes an open file description
              lock we would like to place on the file.  If the lock  could  be
              placed,  fcntl() does not actually place it, but returns F_UNLCK
              in the l_type field of lock and leaves the other fields  of  the
              structure  unchanged.   If  one or more incompatible locks would
              prevent this lock being placed, then details about one of  these
              locks are returned via lock, as described above for F_GETLK.

       In  the  current implementation, no deadlock detection is performed for
       open file description locks.  (This contrasts  with  process-associated
       record locks, for which the kernel does perform deadlock detection.)

   Mandatory locking
       Warning:  the  Linux implementation of mandatory locking is unreliable.
       See BUGS below.

       By  default,  both  traditional  (process-associated)  and  open   file
       description record locks are advisory.  Advisory locks are not enforced
       and are useful only between cooperating processes.

       Both lock types can also be mandatory.  Mandatory  locks  are  enforced
       for  all  processes.   If  a  process  tries to perform an incompatible
       access (e.g., read(2) or write(2)) on a file region that has an  incom-
       patible mandatory lock, then the result depends upon whether the O_NON-
       BLOCK flag is enabled for its open file description.  If the O_NONBLOCK
       flag  is not enabled, then the system call is blocked until the lock is
       removed or converted to a mode that is compatible with the access.   If
       the  O_NONBLOCK  flag  is  enabled, then the system call fails with the
       error EAGAIN.

       To make use of mandatory locks, mandatory locking must be enabled  both
       on  the filesystem that contains the file to be locked, and on the file
       itself.  Mandatory locking is enabled on a  filesystem  using  the  "-o
       mand" option to mount(8), or the MS_MANDLOCK flag for mount(2).  Manda-
       tory locking is enabled on a file by disabling group execute permission
       on  the file and enabling the set-group-ID permission bit (see chmod(1)
       and chmod(2)).

       Mandatory locking is not specified by POSIX.  Some other  systems  also
       support  mandatory  locking,  although  the details of how to enable it
       vary across systems.

   Managing signals
       F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG and F_SETSIG are
       used to manage I/O availability signals:

       F_GETOWN (void)
              Return  (as the function result) the process ID or process group
              currently receiving SIGIO and SIGURG signals for events on  file
              descriptor  fd.   Process  IDs  are returned as positive values;
              process group IDs are returned as negative values (but see  BUGS
              below).  arg is ignored.

       F_SETOWN (int)
              Set  the  process ID or process group ID that will receive SIGIO
              and SIGURG signals for events on file descriptor fd  to  the  ID
              given  in arg.  A process ID is specified as a positive value; a
              process group ID is specified as a negative  value.   Most  com-
              monly,  the  calling process specifies itself as the owner (that
              is, arg is specified as getpid(2)).

              If you set the O_ASYNC status flag on a file descriptor by using
              the  F_SETFL command of fcntl(), a SIGIO signal is sent whenever
              input or  output  becomes  possible  on  that  file  descriptor.
              F_SETSIG  can  be used to obtain delivery of a signal other than
              SIGIO.  If this permission  check  fails,  then  the  signal  is
              silently discarded.

              Sending  a  signal  to  the  owner  process (group) specified by
              F_SETOWN is subject  to  the  same  permissions  checks  as  are
              described for kill(2), where the sending process is the one that
              employs F_SETOWN (but see BUGS below).

              If the file descriptor fd refers  to  a  socket,  F_SETOWN  also
              selects  the recipient of SIGURG signals that are delivered when
              out-of-band data arrives on that socket.  (SIGURG is sent in any
              situation  where  select(2) would report the socket as having an
              "exceptional condition".)

              The following was true in 2.6.x kernels up to and including ker-
              nel 2.6.11:

                     If  a  nonzero  value  is  given  to F_SETSIG in a multi-
                     threaded process running with a  threading  library  that
                     supports  thread  groups  (e.g.,  NPTL),  then a positive
                     value given to F_SETOWN has a different meaning:  instead
                     of  being a process ID identifying a whole process, it is
                     a thread  ID  identifying  a  specific  thread  within  a
                     process.   Consequently,  it  may  be  necessary  to pass
                     F_SETOWN the result of gettid(2) instead of getpid(2)  to
                     get  sensible results when F_SETSIG is used.  (In current
                     Linux threading implementations, a main  thread's  thread
                     ID is the same as its process ID.  This means that a sin-
                     gle-threaded program can equally use  gettid(2)  or  get-
                     pid(2) in this scenario.)  Note, however, that the state-
                     ments in this paragraph do not apply to the SIGURG signal
                     generated  for  out-of-band data on a socket: this signal
                     is always sent to either a process or  a  process  group,
                     depending on the value given to F_SETOWN.

              The above behavior was accidentally dropped in Linux 2.6.12, and
              won't be restored.  From Linux 2.6.32 onward, use F_SETOWN_EX to
              target SIGIO and SIGURG signals at a particular thread.

       F_GETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
              Return  the current file descriptor owner settings as defined by
              a previous F_SETOWN_EX operation.  The information  is  returned
              in  the  structure  pointed  to  by arg, which has the following
              form:

                  struct f_owner_ex {
                      int   type;
                      pid_t pid;
                  };

              The  type  field  will  have  one  of  the  values  F_OWNER_TID,
              F_OWNER_PID, or F_OWNER_PGRP.  The pid field is a positive inte-
              ger representing a thread ID, process ID, or process  group  ID.
              See F_SETOWN_EX for more details.

       F_SETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
              This  operation  performs a similar task to F_SETOWN.  It allows
              the caller to direct I/O  availability  signals  to  a  specific
              thread,  process,  or  process  group.  The caller specifies the
              target of signals via arg, which is a pointer  to  a  f_owner_ex
              structure.   The  type  field  has  one of the following values,
              which define how pid is interpreted:

              F_OWNER_TID
                     Send the signal to the thread whose thread ID (the  value
                     returned by a call to clone(2) or gettid(2)) is specified
                     in pid.

              F_OWNER_PID
                     Send the signal to the process whose ID is  specified  in
                     pid.

              F_OWNER_PGRP
                     Send  the  signal to the process group whose ID is speci-
                     fied in pid.  (Note that, unlike with F_SETOWN, a process
                     group ID is specified as a positive value here.)

       F_GETSIG (void)
              Return  (as  the  function result) the signal sent when input or
              output becomes possible.  A value of zero means SIGIO  is  sent.
              Any  other  value  (including SIGIO) is the signal sent instead,
              and in this case additional info is available to the signal han-
              dler if installed with SA_SIGINFO.  arg is ignored.

       F_SETSIG (int)
              Set the signal sent when input or output becomes possible to the
              value given in arg.  A value of zero means to send  the  default
              SIGIO  signal.   Any other value (including SIGIO) is the signal
              to send instead, and in this case additional info  is  available
              to the signal handler if installed with SA_SIGINFO.

              By  using  F_SETSIG with a nonzero value, and setting SA_SIGINFO
              for the signal handler  (see  sigaction(2)),  extra  information
              about  I/O events is passed to the handler in a siginfo_t struc-
              ture.  If the si_code field indicates the  source  is  SI_SIGIO,
              the  si_fd  field  gives the file descriptor associated with the
              event.  Otherwise, there is no indication which file descriptors
              are pending, and you should use the usual mechanisms (select(2),
              poll(2), read(2) with O_NONBLOCK set etc.)  to  determine  which
              file descriptors are available for I/O.

              By  selecting  a  real time signal (value >= SIGRTMIN), multiple
              I/O events may be queued using the same signal numbers.   (Queu-
              ing  is  dependent  on  available memory).  Extra information is
              available if SA_SIGINFO is set for the signal handler, as above.

              Note that Linux imposes a limit on the number of real-time  sig-
              nals  that may be queued to a process (see getrlimit(2) and sig-
              nal(7)) and if this limit is reached, then the kernel reverts to
              delivering  SIGIO,  and  this  signal is delivered to the entire
              process rather than to a specific thread.

       Using these mechanisms, a program can implement fully asynchronous  I/O
       without using select(2) or poll(2) most of the time.

       The  use  of  O_ASYNC  is  specific  to BSD and Linux.  The only use of
       F_GETOWN and F_SETOWN specified in POSIX.1 is in conjunction  with  the
       use of the SIGURG signal on sockets.  (POSIX does not specify the SIGIO
       signal.)  F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and F_SETSIG  are  Linux-
       specific.  POSIX has asynchronous I/O and the aio_sigevent structure to
       achieve similar things; these are also available in Linux  as  part  of
       the GNU C Library (Glibc).

   Leases
       F_SETLEASE and F_GETLEASE (Linux 2.4 onward) are used (respectively) to
       establish a new lease, and retrieve the current lease, on the open file
       description  referred  to by the file descriptor fd.  A file lease pro-
       vides a mechanism whereby the process holding  the  lease  (the  "lease
       holder")  is  notified  (via  delivery of a signal) when a process (the
       "lease breaker") tries to open(2) or truncate(2) the file  referred  to
       by that file descriptor.

       F_SETLEASE (int)
              Set  or  remove a file lease according to which of the following
              values is specified in the integer arg:

              F_RDLCK
                     Take out a read  lease.   This  will  cause  the  calling
                     process  to be notified when the file is opened for writ-
                     ing or is truncated.  A read lease can be placed only  on
                     a file descriptor that is opened read-only.

              F_WRLCK
                     Take out a write lease.  This will cause the caller to be
                     notified when the file is opened for reading  or  writing
                     or  is  truncated.  A write lease may be placed on a file
                     only if there are no other open file descriptors for  the
                     file.

              F_UNLCK
                     Remove our lease from the file.

       Leases  are  associated  with  an  open file description (see open(2)).
       This means that duplicate file descriptors (created  by,  for  example,
       fork(2) or dup(2)) refer to the same lease, and this lease may be modi-
       fied or released using any  of  these  descriptors.   Furthermore,  the
       lease  is  released  by  either an explicit F_UNLCK operation on any of
       these duplicate descriptors, or when all  such  descriptors  have  been
       closed.

       Leases may be taken out only on regular files.  An unprivileged process
       may take out a lease only on a  file  whose  UID  (owner)  matches  the
       filesystem UID of the process.  A process with the CAP_LEASE capability
       may take out leases on arbitrary files.

       F_GETLEASE (void)
              Indicates what  type  of  lease  is  associated  with  the  file
              descriptor  fd by returning either F_RDLCK, F_WRLCK, or F_UNLCK,
              indicating, respectively, a read lease , a write  lease,  or  no
              lease.  arg is ignored.

       When a process (the "lease breaker") performs an open(2) or truncate(2)
       that conflicts with a lease established via F_SETLEASE, the system call
       is  blocked  by  the kernel and the kernel notifies the lease holder by
       sending it a signal  (SIGIO  by  default).   The  lease  holder  should
       respond to receipt of this signal by doing whatever cleanup is required
       in preparation for the file to be accessed by  another  process  (e.g.,
       flushing cached buffers) and then either remove or downgrade its lease.
       A lease is removed by performing an F_SETLEASE command  specifying  arg
       as  F_UNLCK.   If the lease holder currently holds a write lease on the
       file, and the lease breaker is opening the file for reading, then it is
       sufficient for the lease holder to downgrade the lease to a read lease.
       This is done by performing an  F_SETLEASE  command  specifying  arg  as
       F_RDLCK.

       If  the  lease holder fails to downgrade or remove the lease within the
       number of seconds specified in /proc/sys/fs/lease-break-time, then  the
       kernel forcibly removes or downgrades the lease holder's lease.

       Once  a  lease  break has been initiated, F_GETLEASE returns the target
       lease type (either F_RDLCK or F_UNLCK, depending on what would be  com-
       patible  with  the  lease  breaker)  until the lease holder voluntarily
       downgrades or removes the lease or the kernel forcibly  does  so  after
       the lease break timer expires.

       Once  the lease has been voluntarily or forcibly removed or downgraded,
       and assuming the lease breaker has not unblocked its system  call,  the
       kernel permits the lease breaker's system call to proceed.

       If the lease breaker's blocked open(2) or truncate(2) is interrupted by
       a signal handler, then the system call fails with the error EINTR,  but
       the  other  steps still occur as described above.  If the lease breaker
       is killed by a signal while blocked in open(2) or truncate(2), then the
       other steps still occur as described above.  If the lease breaker spec-
       ifies the O_NONBLOCK flag when calling open(2), then the  call  immedi-
       ately fails with the error EWOULDBLOCK, but the other steps still occur
       as described above.

       The default signal used to notify the lease holder is SIGIO,  but  this
       can  be  changed  using the F_SETSIG command to fcntl().  If a F_SETSIG
       command is performed (even one specifying SIGIO), and the  signal  han-
       dler  is  established using SA_SIGINFO, then the handler will receive a
       siginfo_t structure as its second argument, and the si_fd field of this
       argument  will  hold  the  descriptor  of the leased file that has been
       accessed by another process.  (This  is  useful  if  the  caller  holds
       leases against multiple files).

   File and directory change notification (dnotify)
       F_NOTIFY (int)
              (Linux  2.4  onward)  Provide  notification  when  the directory
              referred to by fd or any  of  the  files  that  it  contains  is
              changed.   The events to be notified are specified in arg, which
              is a bit mask specified by ORing together zero or  more  of  the
              following bits:

              DN_ACCESS   A file was accessed (read, pread, readv)
              DN_MODIFY   A  file  was  modified (write, pwrite, writev, trun-
                          cate, ftruncate).
              DN_CREATE   A file was created (open, creat, mknod, mkdir, link,
                          symlink, rename).
              DN_DELETE   A  file  was  unlinked  (unlink,  rename  to another
                          directory, rmdir).
              DN_RENAME   A file was renamed within this directory (rename).
              DN_ATTRIB   The attributes of a file were changed (chown, chmod,
                          utime[s]).

              (In  order  to obtain these definitions, the _GNU_SOURCE feature
              test macro must be defined before including any header files.)

              Directory notifications are normally "one-shot", and the  appli-
              cation must reregister to receive further notifications.  Alter-
              natively, if DN_MULTISHOT is included in arg, then  notification
              will remain in effect until explicitly removed.

              A  series of F_NOTIFY requests is cumulative, with the events in
              arg being added to the set already monitored.  To disable  noti-
              fication  of all events, make an F_NOTIFY call specifying arg as
              0.

              Notification occurs via delivery of a signal.  The default  sig-
              nal is SIGIO, but this can be changed using the F_SETSIG command
              to fcntl().  In the latter case, the signal handler  receives  a
              siginfo_t  structure  as its second argument (if the handler was
              established using SA_SIGINFO) and the si_fd field of this struc-
              ture  contains the file descriptor which generated the notifica-
              tion (useful when establishing notification on multiple directo-
              ries).

              Especially when using DN_MULTISHOT, a real time signal should be
              used for notification, so that  multiple  notifications  can  be
              queued.

              NOTE:  New applications should use the inotify interface (avail-
              able since kernel 2.6.13), which provides a much superior inter-
              face for obtaining notifications of filesystem events.  See ino-
              tify(7).

   Changing the capacity of a pipe
       F_SETPIPE_SZ (int; since Linux 2.6.35)
              Change the capacity of the pipe referred to by fd to be at least
              arg bytes.  An unprivileged process can adjust the pipe capacity
              to any value between the system page size and the limit  defined
              in  /proc/sys/fs/pipe-max-size  (see  proc(5)).  Attempts to set
              the pipe capacity below the page size are silently rounded up to
              the  page  size.  Attempts by an unprivileged process to set the
              pipe capacity  above  the  limit  in  /proc/sys/fs/pipe-max-size
              yield  the  error EPERM; a privileged process (CAP_SYS_RESOURCE)
              can override the limit.  When  allocating  the  buffer  for  the
              pipe,  the kernel may use a capacity larger than arg, if that is
              convenient for the implementation.  The  F_GETPIPE_SZ  operation
              returns the actual size used.  Attempting to set the pipe capac-
              ity smaller than the amount of buffer space  currently  used  to
              store data produces the error EBUSY.

       F_GETPIPE_SZ (void; since Linux 2.6.35)
              Return  (as  the  function  result)  the  capacity  of  the pipe
              referred to by fd.

RETURN VALUE
       For a successful call, the return value depends on the operation:

       F_DUPFD  The new descriptor.

       F_GETFD  Value of file descriptor flags.

       F_GETFL  Value of file status flags.

       F_GETLEASE
                Type of lease held on file descriptor.

       F_GETOWN Value of descriptor owner.

       F_GETSIG Value of signal sent when read or write becomes  possible,  or
                zero for traditional SIGIO behavior.

       F_GETPIPE_SZ
                The pipe capacity.

       All other commands
                Zero.

       On error, -1 is returned, and errno is set appropriately.

ERRORS
       EACCES or EAGAIN
              Operation is prohibited by locks held by other processes.

       EAGAIN The  operation  is  prohibited because the file has been memory-
              mapped by another process.

       EBADF  fd is not an open file descriptor, or the command was F_SETLK or
              F_SETLKW  and  the  file descriptor open mode doesn't match with
              the type of lock requested.

       EDEADLK
              It was detected that the specified F_SETLKW command would  cause
              a deadlock.

       EFAULT lock is outside your accessible address space.

       EINTR  For  F_SETLKW, the command was interrupted by a signal; see sig-
              nal(7).  For F_GETLK and F_SETLK, the command was interrupted by
              a  signal  before the lock was checked or acquired.  Most likely
              when locking a remote file (e.g., locking  over  NFS),  but  can
              sometimes happen locally.

       EINVAL The value specified in cmd is not recognized by this kernel.

       EINVAL For  F_DUPFD,  arg  is  negative  or is greater than the maximum
              allowable value.  For F_SETSIG, arg is not an  allowable  signal
              number.

       EINVAL cmd  is F_OFD_SETLK, F_OFD_SETLKW, or F_OFD_GETLK, and l_pid was
              not specified as zero.

       EMFILE For F_DUPFD, the process already has the maximum number of  file
              descriptors open.

       ENOLCK Too  many  segment  locks  open, lock table is full, or a remote
              locking protocol failed (e.g., locking over NFS).

       EPERM  Attempted to clear the O_APPEND flag on  a  file  that  has  the
              append-only attribute set.

CONFORMING TO
       SVr4,  4.3BSD,  POSIX.1-2001.   Only  the  operations F_DUPFD, F_GETFD,
       F_SETFD, F_GETFL, F_SETFL, F_GETLK, F_SETLK, and F_SETLKW are specified
       in POSIX.1-2001.

       F_GETOWN  and  F_SETOWN  are  specified in POSIX.1-2001.  (To get their
       definitions, define either _BSD_SOURCE, or _XOPEN_SOURCE with the value
       500 or greater, or _POSIX_C_SOURCE with the value 200809L or greater.)

       F_DUPFD_CLOEXEC is specified in POSIX.1-2008.  (To get this definition,
       define  _POSIX_C_SOURCE  with  the  value  200809L   or   greater,   or
       _XOPEN_SOURCE with the value 700 or greater.)

       F_GETOWN_EX,  F_SETOWN_EX, F_SETPIPE_SZ, F_GETPIPE_SZ, F_GETSIG, F_SET-
       SIG, F_NOTIFY, F_GETLEASE, and F_SETLEASE are Linux-specific.   (Define
       the _GNU_SOURCE macro to obtain these definitions.)

       F_OFD_SETLK, F_OFD_SETLKW, and F_OFD_GETLK are Linux-specific, but work
       is being done to have them included in the next version of POSIX.1.

NOTES
       The errors returned by dup2(2) are different  from  those  returned  by
       F_DUPFD.

   File locking
       The original Linux fcntl() system call was not designed to handle large
       file offsets (in the flock structure).  Consequently, an fcntl64() sys-
       tem  call was added in Linux 2.4.  The newer system call employs a dif-
       ferent structure for file locking, flock64, and corresponding commands,
       F_GETLK64,  F_SETLK64,  and  F_SETLKW64.  However, these details can be
       ignored by applications using glibc,  whose  fcntl()  wrapper  function
       transparently  employs  the  more recent system call where it is avail-
       able.

       The errors returned by dup2(2) are different  from  those  returned  by
       F_DUPFD.

   Record locks
       Since  kernel  2.0,  there  is no interaction between the types of lock
       placed by flock(2) and fcntl().

       Several systems have more fields in struct flock such as, for  example,
       l_sysid.   Clearly,  l_pid  alone is not going to be very useful if the
       process holding the lock may live on a different machine.

       The original Linux fcntl() system call was not designed to handle large
       file offsets (in the flock structure).  Consequently, an fcntl64() sys-
       tem call was added in Linux 2.4.  The newer system call employs a  dif-
       ferent structure for file locking, flock64, and corresponding commands,
       F_GETLK64, F_SETLK64, and F_SETLKW64.  However, these  details  can  be
       ignored  by  applications  using  glibc, whose fcntl() wrapper function
       transparently employs the more recent system call where  it  is  avail-
       able.

   Record locking and NFS
       Before Linux 3.12, if an NFSv4 client loses contact with the server for
       a period of time (defined as more than 90 seconds  with  no  communica-
       tion),  it might lose and regain a lock without ever being aware of the
       fact.  (The period of time after which contact is assumed lost is known
       as  the NFSv4 leasetime.  On a Linux NFS server, this can be determined
       by looking at /proc/fs/nfsd/nfsv4leasetime, which expresses the  period
       in  seconds.   The  default  value for this file is 90.)  This scenario
       potentially risks data corruption, since another process might  acquire
       a lock in the intervening period and perform file I/O.

       Since Linux 3.12, if an NFSv4 client loses contact with the server, any
       I/O to the file by a process which "thinks" it holds a lock  will  fail
       until  that  process  closes and reopens the file.  A kernel parameter,
       nfs.recover_lost_locks, can be set to 1 to obtain the  pre-3.12  behav-
       ior, whereby the client will attempt to recover lost locks when contact
       is reestablished with the server.  Because of  the  attendant  risk  of
       data corruption, this parameter defaults to 0 (disabled).

BUGS
   F_SETFL
       It  is  not  possible to use F_SETFL to change the state of the O_DSYNC
       and O_SYNC flags.  Attempts to change the  state  of  these  flags  are
       silently ignored.

   F_GETOWN
       A limitation of the Linux system call conventions on some architectures
       (notably i386) means that if  a  (negative)  process  group  ID  to  be
       returned  by  F_GETOWN  falls in the range -1 to -4095, then the return
       value is wrongly interpreted by glibc as an error in the  system  call;
       that is, the return value of fcntl() will be -1, and errno will contain
       the (positive) process group ID.  The Linux-specific F_GETOWN_EX opera-
       tion  avoids  this  problem.  Since glibc version 2.11, glibc makes the
       kernel  F_GETOWN  problem  invisible  by  implementing  F_GETOWN  using
       F_GETOWN_EX.

   F_SETOWN
       In  Linux 2.4 and earlier, there is bug that can occur when an unprivi-
       leged process uses F_SETOWN to specify  the  owner  of  a  socket  file
       descriptor  as  a process (group) other than the caller.  In this case,
       fcntl() can return -1 with errno set to  EPERM,  even  when  the  owner
       process  (group)  is one that the caller has permission to send signals
       to.  Despite this error return, the file descriptor owner is  set,  and
       signals will be sent to the owner.

   Deadlock detection
       The  deadlock-detection  algorithm  employed by the kernel when dealing
       with F_SETLKW requests can yield  both  false  negatives  (failures  to
       detect deadlocks, leaving a set of deadlocked processes blocked indefi-
       nitely) and false positives (EDEADLK errors when there is no deadlock).
       For  example, the kernel limits the lock depth of its dependency search
       to 10 steps, meaning that circular deadlock  chains  that  exceed  that
       size  will  not be detected.  In addition, the kernel may falsely indi-
       cate a deadlock when two or more processes created using  the  clone(2)
       CLONE_FILES flag place locks that appear (to the kernel) to conflict.

   Mandatory locking
       The Linux implementation of mandatory locking is subject to race condi-
       tions which render it unreliable: a write(2) call that overlaps with  a
       lock  may  modify  data after the mandatory lock is acquired; a read(2)
       call that overlaps with a lock may detect changes  to  data  that  were
       made only after a write lock was acquired.  Similar races exist between
       mandatory locks and mmap(2).  It is therefore inadvisable  to  rely  on
       mandatory locking.

SEE ALSO
       dup2(2),  flock(2), open(2), socket(2), lockf(3), capabilities(7), fea-
       ture_test_macros(7)

       locks.txt, mandatory-locking.txt, and dnotify.txt in the  Linux  kernel
       source  directory  Documentation/filesystems/  (on older kernels, these
       files are directly under the Documentation/ directory,  and  mandatory-
       locking.txt is called mandatory.txt)

COLOPHON
       This  page  is  part of release 3.69 of the Linux man-pages project.  A
       description of the project, information about reporting bugs,  and  the
       latest     version     of     this    page,    can    be    found    at
       http://www.kernel.org/doc/man-pages/.

Linux                             2014-06-13                          FCNTL(2)

Want to link to this manual page? Use this URL:
<
http://star2.abcm.com/cgi-bin/bsdi-man?query=fcntl64&sektion=2&manpath=>

home | help