OpenSuSE Man Pages

Man Page or Keyword Search:
Man Architecture
Apropos Keyword Search (all sections) Output format
home | help
x SuSE Linux 13.1-RELEASE x
x SuSE Linux 13.1-RELEASEx
PERF_EVENT_OPEN(2)         Linux Programmer's Manual        PERF_EVENT_OPEN(2)

NAME
       perf_event_open - set up performance monitoring

SYNOPSIS
       #include <linux/perf_event.h>
       #include <linux/hw_breakpoint.h>

       int perf_event_open(struct perf_event_attr *attr,
                           pid_t pid, int cpu, int group_fd,
                           unsigned long flags);

       Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
       Given  a  list of parameters, perf_event_open() returns a file descrip-
       tor, for use in subsequent system calls  (read(2),  mmap(2),  prctl(2),
       fcntl(2), etc.).

       A  call to perf_event_open() creates a file descriptor that allows mea-
       suring performance information.  Each file  descriptor  corresponds  to
       one  event  that  is measured; these can be grouped together to measure
       multiple events simultaneously.

       Events can be enabled and disabled in two ways: via  ioctl(2)  and  via
       prctl(2).   When  an  event  is  disabled it does not count or generate
       overflows but does continue to exist and maintain its count value.

       Events come in two flavors: counting and sampled.  A counting event  is
       one  that  is  used  for  counting  the aggregate number of events that
       occur.  In general, counting event results are gathered with a  read(2)
       call.   A  sampling  event periodically writes measurements to a buffer
       that can then be accessed via mmap(2).

   Arguments
       The pid and cpu arguments allow specifying which  process  and  CPU  to
       monitor:

       pid == 0 and cpu == -1
              This measures the calling process/thread on any CPU.

       pid == 0 and cpu >= 0
              This  measures  the  calling process/thread only when running on
              the specified CPU.

       pid > 0 and cpu == -1
              This measures the specified process/thread on any CPU.

       pid > 0 and cpu >= 0
              This measures the specified process/thread only when running  on
              the specified CPU.

       pid == -1 and cpu >= 0
              This  measures all processes/threads on the specified CPU.  This
              requires   CAP_SYS_ADMIN   capability   or   a    /proc/sys/ker-
              nel/perf_event_paranoid value of less than 1.

       pid == -1 and cpu == -1
              This setting is invalid and will return an error.

       The  group_fd  argument  allows  event  groups to be created.  An event
       group has one event which is the group leader.  The leader  is  created
       first,  with  group_fd = -1.  The rest of the group members are created
       with subsequent perf_event_open() calls with group_fd being set to  the
       file  descriptor  of  the  group leader.  (A single event on its own is
       created with group_fd = -1 and is considered to be a group with only  1
       member.)   An  event group is scheduled onto the CPU as a unit: it will
       be put onto the CPU only if all of the events in the group can  be  put
       onto  the  CPU.  This means that the values of the member events can be
       meaningfully compared--added, divided (to get ratios), and so  on--with
       each other, since they have counted events for the same set of executed
       instructions.

       The flags argument is formed by ORing together zero or more of the fol-
       lowing values:

       PERF_FLAG_FD_CLOEXEC (since Linux 3.14).
              This  flag  enables the close-on-exec flag for the created event
              file descriptor, so that the file  descriptor  is  automatically
              closed  on  execve(2).   Setting the close-on-exec flags at cre-
              ation time, rather than later with  fcntl(2),  avoids  potential
              race    conditions    where    the    calling   thread   invokes
              perf_event_open() and fcntl(2)  at  the  same  time  as  another
              thread calls fork(2) then execve(2).

       PERF_FLAG_FD_NO_GROUP
              This flag allows creating an event as part of an event group but
              having no group leader.  It is unclear why this is useful.

       PERF_FLAG_FD_OUTPUT
              This flag reroutes the output from an event to the group leader.

       PERF_FLAG_PID_CGROUP (since Linux 2.6.39).
              This flag activates  per-container  system-wide  monitoring.   A
              container is an abstraction that isolates a set of resources for
              finer-grained control (CPUs, memory, etc.).  In this  mode,  the
              event  is  measured  only if the thread running on the monitored
              CPU belongs to the designated container (cgroup).  The cgroup is
              identified  by passing a file descriptor opened on its directory
              in the cgroupfs filesystem.  For instance, if the cgroup to mon-
              itor   is   called  test,  then  a  file  descriptor  opened  on
              /dev/cgroup/test (assuming cgroupfs is mounted  on  /dev/cgroup)
              must  be  passed  as  the  pid  parameter.  cgroup monitoring is
              available only for system-wide events and may therefore  require
              extra permissions.

       The  perf_event_attr structure provides detailed configuration informa-
       tion for the event being created.

           struct perf_event_attr {
               __u32 type;         /* Type of event */
               __u32 size;         /* Size of attribute structure */
               __u64 config;       /* Type-specific configuration */

               union {
                   __u64 sample_period;    /* Period of sampling */
                   __u64 sample_freq;      /* Frequency of sampling */
               };

               __u64 sample_type;  /* Specifies values included in sample */
               __u64 read_format;  /* Specifies values returned in read */

               __u64 disabled       : 1,   /* off by default */
                     inherit        : 1,   /* children inherit it */
                     pinned         : 1,   /* must always be on PMU */
                     exclusive      : 1,   /* only group on PMU */
                     exclude_user   : 1,   /* don't count user */
                     exclude_kernel : 1,   /* don't count kernel */
                     exclude_hv     : 1,   /* don't count hypervisor */
                     exclude_idle   : 1,   /* don't count when idle */
                     mmap           : 1,   /* include mmap data */
                     comm           : 1,   /* include comm data */
                     freq           : 1,   /* use freq, not period */
                     inherit_stat   : 1,   /* per task counts */
                     enable_on_exec : 1,   /* next exec enables */
                     task           : 1,   /* trace fork/exit */
                     watermark      : 1,   /* wakeup_watermark */
                     precise_ip     : 2,   /* skid constraint */
                     mmap_data      : 1,   /* non-exec mmap data */
                     sample_id_all  : 1,   /* sample_type all events */
                     exclude_host   : 1,   /* don't count in host */
                     exclude_guest  : 1,   /* don't count in guest */
                     exclude_callchain_kernel : 1,
                                           /* exclude kernel callchains */
                     exclude_callchain_user   : 1,
                                           /* exclude user callchains */
                     __reserved_1   : 41;

               union {
                   __u32 wakeup_events;    /* wakeup every n events */
                   __u32 wakeup_watermark; /* bytes before wakeup */
               };

               __u32     bp_type;          /* breakpoint type */

               union {
                   __u64 bp_addr;          /* breakpoint address */
                   __u64 config1;          /* extension of config */
               };

               union {
                   __u64 bp_len;           /* breakpoint length */
                   __u64 config2;          /* extension of config1 */
               };
               __u64 branch_sample_type;   /* enum perf_branch_sample_type */
               __u64 sample_regs_user;     /* user regs to dump on samples */
               __u32 sample_stack_user;    /* size of stack to dump on
                                              samples */
               __u32 __reserved_2;         /* Align to u64 */

           };

       The fields of the  perf_event_attr  structure  are  described  in  more
       detail below:

       type   This  field specifies the overall event type.  It has one of the
              following values:

              PERF_TYPE_HARDWARE
                     This indicates one of the "generalized"  hardware  events
                     provided  by the kernel.  See the config field definition
                     for more details.

              PERF_TYPE_SOFTWARE
                     This indicates one of the  software-defined  events  pro-
                     vided  by  the  kernel  (even  if  no hardware support is
                     available).

              PERF_TYPE_TRACEPOINT
                     This indicates a tracepoint provided by the kernel trace-
                     point infrastructure.

              PERF_TYPE_HW_CACHE
                     This  indicates  a hardware cache event.  This has a spe-
                     cial encoding, described in the config field definition.

              PERF_TYPE_RAW
                     This indicates a "raw" implementation-specific  event  in
                     the config field.

              PERF_TYPE_BREAKPOINT (since Linux 2.6.33)
                     This  indicates  a hardware breakpoint as provided by the
                     CPU.   Breakpoints  can  be  read/write  accesses  to  an
                     address as well as execution of an instruction address.

              dynamic PMU
                     Since  Linux 2.6.39, perf_event_open() can support multi-
                     ple PMUs.  To enable this, a value exported by the kernel
                     can  be  used  in the type field to indicate which PMU to
                     use.  The value to use can be found in the sysfs filesys-
                     tem:  there  is  a  subdirectory  per  PMU instance under
                     /sys/bus/event_source/devices.   In   each   subdirectory
                     there is a type file whose content is an integer that can
                     be   used   in   the   type   field.     For    instance,
                     /sys/bus/event_source/devices/cpu/type contains the value
                     for the core CPU PMU, which is usually 4.

       size   The size of the perf_event_attr structure  for  forward/backward
              compatibility.  Set this using sizeof(struct perf_event_attr) to
              allow the kernel to see the struct size at the time of  compila-
              tion.

              The  related  define  PERF_ATTR_SIZE_VER0 is set to 64; this was
              the size of the first published struct.  PERF_ATTR_SIZE_VER1  is
              72,  corresponding  to  the  addition  of  breakpoints  in Linux
              2.6.33.  PERF_ATTR_SIZE_VER2 is 80 corresponding to the addition
              of  branch sampling in Linux 3.4.  PERF_ATR_SIZE_VER3 is 96 cor-
              responding  to  the  addition  of  sample_regs_user   and   sam-
              ple_stack_user in Linux 3.7.

       config This  specifies  which  event  you want, in conjunction with the
              type field.  The config1 and config2 fields are also taken  into
              account  in  cases  where 64 bits is not enough to fully specify
              the event.  The encoding of these fields are event dependent.

              The most significant bit (bit 63) of config  signifies  CPU-spe-
              cific  (raw) counter configuration data; if the most significant
              bit is unset, the next 7 bits are an event type and the rest  of
              the bits are the event identifier.

              There  are  various ways to set the config field that are depen-
              dent on the value of the previously described type field.   What
              follows  are  various possible settings for config separated out
              by type.

              If type is PERF_TYPE_HARDWARE, we are measuring one of the  gen-
              eralized hardware CPU events.  Not all of these are available on
              all platforms.  Set config to one of the following:

                   PERF_COUNT_HW_CPU_CYCLES
                          Total cycles.  Be wary of what  happens  during  CPU
                          frequency scaling.

                   PERF_COUNT_HW_INSTRUCTIONS
                          Retired  instructions.   Be  careful,  these  can be
                          affected by various issues,  most  notably  hardware
                          interrupt counts.

                   PERF_COUNT_HW_CACHE_REFERENCES
                          Cache  accesses.   Usually this indicates Last Level
                          Cache accesses but this may vary depending  on  your
                          CPU.  This may include prefetches and coherency mes-
                          sages; again this depends on the design of your CPU.

                   PERF_COUNT_HW_CACHE_MISSES
                          Cache misses.  Usually  this  indicates  Last  Level
                          Cache  misses;  this  is intended to be used in con-
                          junction  with  the   PERF_COUNT_HW_CACHE_REFERENCES
                          event to calculate cache miss rates.

                   PERF_COUNT_HW_BRANCH_INSTRUCTIONS
                          Retired branch instructions.  Prior to Linux 2.6.34,
                          this used the wrong event on AMD processors.

                   PERF_COUNT_HW_BRANCH_MISSES
                          Mispredicted branch instructions.

                   PERF_COUNT_HW_BUS_CYCLES
                          Bus  cycles,  which  can  be  different  from  total
                          cycles.

                   PERF_COUNT_HW_STALLED_CYCLES_FRONTEND (since Linux 3.0)
                          Stalled cycles during issue.

                   PERF_COUNT_HW_STALLED_CYCLES_BACKEND (since Linux 3.0)
                          Stalled cycles during retirement.

                   PERF_COUNT_HW_REF_CPU_CYCLES (since Linux 3.3)
                          Total cycles; not affected by CPU frequency scaling.

              If  type is PERF_TYPE_SOFTWARE, we are measuring software events
              provided by the kernel.  Set config to one of the following:

                   PERF_COUNT_SW_CPU_CLOCK
                          This reports the CPU clock, a  high-resolution  per-
                          CPU timer.

                   PERF_COUNT_SW_TASK_CLOCK
                          This reports a clock count specific to the task that
                          is running.

                   PERF_COUNT_SW_PAGE_FAULTS
                          This reports the number of page faults.

                   PERF_COUNT_SW_CONTEXT_SWITCHES
                          This counts context switches.  Until  Linux  2.6.34,
                          these  were all reported as user-space events, after
                          that they are reported as happening in the kernel.

                   PERF_COUNT_SW_CPU_MIGRATIONS
                          This reports the number of  times  the  process  has
                          migrated to a new CPU.

                   PERF_COUNT_SW_PAGE_FAULTS_MIN
                          This  counts the number of minor page faults.  These
                          did not require disk I/O to handle.

                   PERF_COUNT_SW_PAGE_FAULTS_MAJ
                          This counts the number of major page faults.   These
                          required disk I/O to handle.

                   PERF_COUNT_SW_ALIGNMENT_FAULTS (since Linux 2.6.33)
                          This  counts  the number of alignment faults.  These
                          happen when unaligned memory  accesses  happen;  the
                          kernel  can handle these but it reduces performance.
                          This happens only on some  architectures  (never  on
                          x86).

                   PERF_COUNT_SW_EMULATION_FAULTS (since Linux 2.6.33)
                          This  counts  the  number  of emulation faults.  The
                          kernel sometimes traps on unimplemented instructions
                          and  emulates  them  for user space.  This can nega-
                          tively impact performance.

                   PERF_COUNT_SW_DUMMY (since Linux 3.12)
                          This is a placeholder  event  that  counts  nothing.
                          Informational  sample  record  types such as mmap or
                          comm must be associated with an active event.   This
                          dummy  event  allows  gathering such records without
                          requiring a counting event.

              If type is PERF_TYPE_TRACEPOINT, then we  are  measuring  kernel
              tracepoints.   The  value  to use in config can be obtained from
              under debugfs tracing/events/*/*/id if ftrace is enabled in  the
              kernel.

              If  type is PERF_TYPE_HW_CACHE, then we are measuring a hardware
              CPU cache event.  To calculate the appropriate config value  use
              the following equation:

                      (perf_hw_cache_id) | (perf_hw_cache_op_id << 8) |
                      (perf_hw_cache_op_result_id << 16)

                  where perf_hw_cache_id is one of:

                      PERF_COUNT_HW_CACHE_L1D
                             for measuring Level 1 Data Cache

                      PERF_COUNT_HW_CACHE_L1I
                             for measuring Level 1 Instruction Cache

                      PERF_COUNT_HW_CACHE_LL
                             for measuring Last-Level Cache

                      PERF_COUNT_HW_CACHE_DTLB
                             for measuring the Data TLB

                      PERF_COUNT_HW_CACHE_ITLB
                             for measuring the Instruction TLB

                      PERF_COUNT_HW_CACHE_BPU
                             for measuring the branch prediction unit

                      PERF_COUNT_HW_CACHE_NODE (since Linux 3.0)
                             for measuring local memory accesses

                  and perf_hw_cache_op_id is one of

                      PERF_COUNT_HW_CACHE_OP_READ
                             for read accesses

                      PERF_COUNT_HW_CACHE_OP_WRITE
                             for write accesses

                      PERF_COUNT_HW_CACHE_OP_PREFETCH
                             for prefetch accesses

                  and perf_hw_cache_op_result_id is one of

                      PERF_COUNT_HW_CACHE_RESULT_ACCESS
                             to measure accesses

                      PERF_COUNT_HW_CACHE_RESULT_MISS
                             to measure misses

              If  type  is  PERF_TYPE_RAW, then a custom "raw" config value is
              needed.  Most CPUs support events that are not  covered  by  the
              "generalized"  events.   These  are  implementation defined; see
              your CPU manual (for example the Intel Volume  3B  documentation
              or  the  AMD  BIOS  and  Kernel  Developer  Guide).  The libpfm4
              library can be used to translate from the name in the  architec-
              tural  manuals to the raw hex value perf_event_open() expects in
              this field.

              If type is PERF_TYPE_BREAKPOINT, then leave config set to  zero.
              Its parameters are set in other places.

       sample_period, sample_freq
              A  "sampling" counter is one that generates an interrupt every N
              events, where N is given by sample_period.  A  sampling  counter
              has  sample_period  >  0.   When  an  overflow interrupt occurs,
              requested data is recorded in the mmap buffer.  The  sample_type
              field controls what data is recorded on each interrupt.

              sample_freq can be used if you wish to use frequency rather than
              period.  In this case, you set the freq flag.  The  kernel  will
              adjust  the sampling period to try and achieve the desired rate.
              The rate of adjustment is a timer tick.

       sample_type
              The various bits in this field specify which values  to  include
              in the sample.  They will be recorded in a ring-buffer, which is
              available to user space using mmap(2).  The order in  which  the
              values are saved in the sample are documented in the MMAP Layout
              subsection below; it is not  the  enum  perf_event_sample_format
              order.

              PERF_SAMPLE_IP
                     Records instruction pointer.

              PERF_SAMPLE_TID
                     Records the process and thread IDs.

              PERF_SAMPLE_TIME
                     Records a timestamp.

              PERF_SAMPLE_ADDR
                     Records an address, if applicable.

              PERF_SAMPLE_READ
                     Record counter values for all events in a group, not just
                     the group leader.

              PERF_SAMPLE_CALLCHAIN
                     Records the callchain (stack backtrace).

              PERF_SAMPLE_ID
                     Records a unique ID for the opened event's group leader.

              PERF_SAMPLE_CPU
                     Records CPU number.

              PERF_SAMPLE_PERIOD
                     Records the current sampling period.

              PERF_SAMPLE_STREAM_ID
                     Records  a  unique  ID  for  the  opened  event.   Unlike
                     PERF_SAMPLE_ID  the  actual ID is returned, not the group
                     leader.  This ID is the  same  as  the  one  returned  by
                     PERF_FORMAT_ID.

              PERF_SAMPLE_RAW
                     Records additional data, if applicable.  Usually returned
                     by tracepoint events.

              PERF_SAMPLE_BRANCH_STACK (since Linux 3.4)
                     This provides a record of recent branches, as provided by
                     CPU  branch  sampling hardware (such as Intel Last Branch
                     Record).  Not all hardware supports this feature.

                     See the branch_sample_type field for how to filter  which
                     branches are reported.

              PERF_SAMPLE_REGS_USER (since Linux 3.7)
                     Records  the  current  user-level CPU register state (the
                     values in the process before the kernel was called).

              PERF_SAMPLE_STACK_USER (since Linux 3.7)
                     Records the user level stack, allowing stack unwinding.

              PERF_SAMPLE_WEIGHT (since Linux 3.10)
                     Records a hardware provided weight value  that  expresses
                     how  costly the sampled event was.  This allows the hard-
                     ware to highlight expensive events in a profile.

              PERF_SAMPLE_DATA_SRC (since Linux 3.10)
                     Records the data source: where in  the  memory  hierarchy
                     the  data  associated  with  the sampled instruction came
                     from.  This is only available if the underlying  hardware
                     supports this feature.

              PERF_SAMPLE_IDENTIFIER (since Linux 3.12)
                     Places  the  SAMPLE_ID  value  in a fixed position in the
                     record, either at the beginning (for sample events) or at
                     the end (if a non-sample event).

                     This  was  necessary  because  a  sample  stream may have
                     records from various different event sources with differ-
                     ent sample_type settings.  Parsing the event stream prop-
                     erly was not possible because the format  of  the  record
                     was needed to find SAMPLE_ID, but the format could not be
                     found without knowing what event the sample  belonged  to
                     (causing a circular dependency).

                     This  new  PERF_SAMPLE_IDENTIFIER setting makes the event
                     stream always parsable by putting SAMPLE_ID  in  a  fixed
                     location, even though it means having duplicate SAMPLE_ID
                     values in records.

              PERF_SAMPLE_TRANSACTION (Since Linux 3.13)
                     Records reasons for  transactional  memory  abort  events
                     (for  example,  from  Intel TSX transactional memory sup-
                     port).

                     The precise_ip setting must  be  greater  than  0  and  a
                     transactional  memory  abort event must be measured or no
                     values will be recorded.  Also note that some  perf_event
                     measurements,  such  as sampled cycle counting, may cause
                     extraneous aborts  (by  causing  an  interrupt  during  a
                     transaction).

       read_format
              This  field specifies the format of the data returned by read(2)
              on a perf_event_open() file descriptor.

              PERF_FORMAT_TOTAL_TIME_ENABLED
                     Adds the 64-bit time_enabled field.  This can be used  to
                     calculate  estimated  totals  if the PMU is overcommitted
                     and multiplexing is happening.

              PERF_FORMAT_TOTAL_TIME_RUNNING
                     Adds the 64-bit time_running field.  This can be used  to
                     calculate  estimated  totals  if the PMU is overcommitted
                     and multiplexing is happening.

              PERF_FORMAT_ID
                     Adds a 64-bit unique value that corresponds to the  event
                     group.

              PERF_FORMAT_GROUP
                     Allows  all  counter  values in an event group to be read
                     with one read.

       disabled
              The disabled bit specifies whether the counter starts  out  dis-
              abled  or  enabled.  If disabled, the event can later be enabled
              by ioctl(2), prctl(2), or enable_on_exec.

              When creating an event group, typically the group leader is ini-
              tialized  with  disabled  set to 1 and any child events are ini-
              tialized with disabled set to 0.  Despite disabled being 0,  the
              child events will not start until the group leader is enabled.

       inherit
              The  inherit bit specifies that this counter should count events
              of child tasks as well as the task specified.  This applies only
              to  new  children,  not to any existing children at the time the
              counter is created (nor to any new children  of  existing  chil-
              dren).

              Inherit  does  not  work  for some combinations of read_formats,
              such as PERF_FORMAT_GROUP.

       pinned The pinned bit specifies that the counter should  always  be  on
              the  CPU  if at all possible.  It applies only to hardware coun-
              ters and only to group leaders.  If a pinned counter  cannot  be
              put  onto  the  CPU (e.g., because there are not enough hardware
              counters or because of a conflict with some other  event),  then
              the  counter goes into an 'error' state, where reads return end-
              of-file (i.e., read(2) returns 0) until the  counter  is  subse-
              quently enabled or disabled.

       exclusive
              The exclusive bit specifies that when this counter's group is on
              the CPU, it should be the only group using the  CPU's  counters.
              In  the future this may allow monitoring programs to support PMU
              features that need to run alone so  that  they  do  not  disrupt
              other hardware counters.

              Note that many unexpected situations may prevent events with the
              exclusive bit set from ever running.  This  includes  any  users
              running  a  system-wide measurement as well as any kernel use of
              the performance counters (including  the  commonly  enabled  NMI
              Watchdog Timer interface).

       exclude_user
              If  this  bit  is  set, the count excludes events that happen in
              user space.

       exclude_kernel
              If this bit is set, the count excludes  events  that  happen  in
              kernel-space.

       exclude_hv
              If this bit is set, the count excludes events that happen in the
              hypervisor.  This is mainly for PMUs that have built-in  support
              for  handling this (such as POWER).  Extra support is needed for
              handling hypervisor measurements on most machines.

       exclude_idle
              If set, don't count when the CPU is idle.

       mmap   The mmap bit enables generation of PERF_RECORD_MMAP samples  for
              every mmap(2) call that has PROT_EXEC set.  This allows tools to
              notice new executable code being mapped into a program  (dynamic
              shared  libraries  for  example) so that addresses can be mapped
              back to the original code.

       comm   The comm bit enables tracking of process command name  as  modi-
              fied by the exec(2) and prctl(PR_SET_NAME) system calls.  Unfor-
              tunately for tools, there is no way to  distinguish  one  system
              call versus the other.

       freq   If  this  bit is set, then sample_frequency not sample_period is
              used when setting up the sampling interval.

       inherit_stat
              This bit enables saving of event counts on  context  switch  for
              inherited  tasks.   This is meaningful only if the inherit field
              is set.

       enable_on_exec
              If this bit is set, a counter is automatically enabled  after  a
              call to exec(2).

       task   If this bit is set, then fork/exit notifications are included in
              the ring buffer.

       watermark
              If set, have a sampling  interrupt  happen  when  we  cross  the
              wakeup_watermark  boundary.   Otherwise, interrupts happen after
              wakeup_events samples.

       precise_ip (since Linux 2.6.35)
              This controls the amount of skid.  Skid is how many instructions
              execute  between  an  event of interest happening and the kernel
              being able to stop and record the event.  Smaller skid is better
              and allows more accurate reporting of which events correspond to
              which instructions, but hardware is often limited with how small
              this can be.

              The values of this are the following:

              0 -    SAMPLE_IP can have arbitrary skid.

              1 -    SAMPLE_IP must have constant skid.

              2 -    SAMPLE_IP requested to have 0 skid.

              3 -    SAMPLE_IP     must     have    0    skid.     See    also
                     PERF_RECORD_MISC_EXACT_IP.

       mmap_data (since Linux 2.6.36)
              The counterpart of the mmap field.  This enables  generation  of
              PERF_RECORD_MMAP  samples  for  mmap(2)  calls  that do not have
              PROT_EXEC set (for example data and SysV shared memory).

       sample_id_all (since Linux 2.6.38)
              If set, then TID, TIME, ID, STREAM_ID, and CPU can  additionally
              be included in non-PERF_RECORD_SAMPLEs if the corresponding sam-
              ple_type is selected.

              If PERF_SAMPLE_IDENTIFIER is specified, then  an  additional  ID
              value  is  included as the last value to ease parsing the record
              stream.  This may lead to the id value appearing twice.

              The layout is described by this pseudo-structure:
                  struct sample_id {
                      { u32 pid, tid; } /* if PERF_SAMPLE_TID set        */
                      { u64 time;     } /* if PERF_SAMPLE_TIME set       */
                      { u64 id;       } /* if PERF_SAMPLE_ID set         */
                      { u64 stream_id;} /* if PERF_SAMPLE_STREAM_ID set  */
                      { u32 cpu, res; } /* if PERF_SAMPLE_CPU set        */
                      { u64 id;       } /* if PERF_SAMPLE_IDENTIFIER set */
                  };

       exclude_host (since Linux 3.2)
              Do not measure time spent in VM host.

       exclude_guest (since Linux 3.2)
              Do not measure time spent in VM guest.

       exclude_callchain_kernel (since Linux 3.7)
              Do not include kernel callchains.

       exclude_callchain_user (since Linux 3.7)
              Do not include user callchains.

       wakeup_events, wakeup_watermark
              This union  sets  how  many  samples  (wakeup_events)  or  bytes
              (wakeup_watermark)  happen  before  an  overflow signal happens.
              Which one is used is selected by the watermark bit flag.

              wakeup_events only counts PERF_RECORD_SAMPLE record  types.   To
              receive  a  signal  for  every  incoming  PERF_RECORD  type  set
              wakeup_watermark to 1.

       bp_type (since Linux 2.6.33)
              This chooses the breakpoint type.  It is one of:

              HW_BREAKPOINT_EMPTY
                     No breakpoint.

              HW_BREAKPOINT_R
                     Count when we read the memory location.

              HW_BREAKPOINT_W
                     Count when we write the memory location.

              HW_BREAKPOINT_RW
                     Count when we read or write the memory location.

              HW_BREAKPOINT_X
                     Count when we execute code at the memory location.

              The values can be combined via a bitwise or, but the combination
              of  HW_BREAKPOINT_R  or  HW_BREAKPOINT_W with HW_BREAKPOINT_X is
              not allowed.

       bp_addr (since Linux 2.6.33)
              bp_addr address of the breakpoint.   For  execution  breakpoints
              this  is  the memory address of the instruction of interest; for
              read and write breakpoints it is the memory address of the  mem-
              ory location of interest.

       config1 (since Linux 2.6.39)
              config1  is  used for setting events that need an extra register
              or otherwise do not fit in the regular config field.   Raw  OFF-
              CORE_EVENTS  on  Nehalem/Westmere/SandyBridge  use this field on
              3.3 and later kernels.

       bp_len (since Linux 2.6.33)
              bp_len is the length of the breakpoint being measured if type is
              PERF_TYPE_BREAKPOINT.     Options    are    HW_BREAKPOINT_LEN_1,
              HW_BREAKPOINT_LEN_2,  HW_BREAKPOINT_LEN_4,  HW_BREAKPOINT_LEN_8.
              For an execution breakpoint, set this to sizeof(long).

       config2 (since Linux 2.6.39)

              config2 is a further extension of the config1 field.

       branch_sample_type (since Linux 3.4)
              If PERF_SAMPLE_BRANCH_STACK is enabled, then this specifies what
              branches to include in the branch record.

              The first part of the value is the privilege level, which  is  a
              combination  of  one  of the following values.  If the user does
              not set privilege level explicitly,  the  kernel  will  use  the
              event's  privilege  level.  Event and branch privilege levels do
              not have to match.

              PERF_SAMPLE_BRANCH_USER
                     Branch target is in user space.

              PERF_SAMPLE_BRANCH_KERNEL
                     Branch target is in kernel space.

              PERF_SAMPLE_BRANCH_HV
                     Branch target is in hypervisor.

              PERF_SAMPLE_BRANCH_PLM_ALL
                     A convenience value that is the  three  preceding  values
                     ORed together.

              In  addition to the privilege value, at least one or more of the
              following bits must be set.

              PERF_SAMPLE_BRANCH_ANY
                     Any branch type.

              PERF_SAMPLE_BRANCH_ANY_CALL
                     Any call branch.

              PERF_SAMPLE_BRANCH_ANY_RETURN
                     Any return branch.

              PERF_SAMPLE_BRANCH_IND_CALL
                     Indirect calls.

              PERF_SAMPLE_BRANCH_ABORT_TX (since Linux 3.11)
                     Transactional memory aborts.

              PERF_SAMPLE_BRANCH_IN_TX (since Linux 3.11)
                     Branch in transactional memory transaction.

              PERF_SAMPLE_BRANCH_NO_TX (since Linux 3.11)
                     Branch not in transactional memory transaction.

       sample_regs_user (since Linux 3.7)
              This bit mask defines the set of user CPU registers to  dump  on
              samples.   The  layout of the register mask is architecture-spe-
              cific     and     described     in     the     kernel     header
              arch/ARCH/include/uapi/asm/perf_regs.h.

       sample_stack_user (since Linux 3.7)
              This  defines  the  size  of the user stack to dump if PERF_SAM-
              PLE_STACK_USER is specified.

   Reading results
       Once a perf_event_open() file descriptor has been opened, the values of
       the  events  can be read from the file descriptor.  The values that are
       there are specified by the read_format field in the attr  structure  at
       open time.

       If you attempt to read into a buffer that is not big enough to hold the
       data ENOSPC is returned

       Here is the layout of the data returned by a read:

       * If PERF_FORMAT_GROUP was specified to allow reading all events  in  a
         group at once:

             struct read_format {
                 u64 nr;            /* The number of events */
                 u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
                 u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
                 struct
                     u64 value;     /* The value of the event */
                     u64 id;        /* if PERF_FORMAT_ID */
                 } values[nr];
             };

       * If PERF_FORMAT_GROUP was not specified:

             struct read_format {
                 u64 value;         /* The value of the event */
                 u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
                 u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
                 u64 id;            /* if PERF_FORMAT_ID */
             };

       The values read are as follows:

       nr     The number of events in this file descriptor.  Only available if
              PERF_FORMAT_GROUP was specified.

       time_enabled, time_running
              Total time the event was enabled and  running.   Normally  these
              are  the  same.   If  more  events  are  started, then available
              counter slots on the PMU, then multiplexing happens  and  events
              run  only  part of the time.  In that case, the time_enabled and
              time running values can be used to scale an estimated value  for
              the count.

       value  An unsigned 64-bit value containing the counter result.

       id     A globally unique value for this particular event, only there if
              PERF_FORMAT_ID was specified in read_format.

   MMAP layout
       When using perf_event_open() in sampled mode, asynchronous events (like
       counter  overflow  or  PROT_EXEC mmap tracking) are logged into a ring-
       buffer.  This ring-buffer is created and accessed through mmap(2).

       The mmap size should be 1+2^n pages, where the first page is a metadata
       page (struct perf_event_mmap_page) that contains various bits of infor-
       mation such as where the ring-buffer head is.

       Before kernel 2.6.39, there is a bug that means  you  must  allocate  a
       mmap ring buffer when sampling even if you do not plan to access it.

       The structure of the first metadata mmap page is as follows:

           struct perf_event_mmap_page {
               __u32 version;        /* version number of this structure */
               __u32 compat_version; /* lowest version this is compat with */
               __u32 lock;           /* seqlock for synchronization */
               __u32 index;          /* hardware counter identifier */
               __s64 offset;         /* add to hardware counter value */
               __u64 time_enabled;   /* time event active */
               __u64 time_running;   /* time event on CPU */
               union {
                   __u64   capabilities;
                   struct {
                       __u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
                             cap_bit0_is_deprecated : 1,
                             cap_user_rdpmc         : 1,
                             cap_user_time          : 1,
                             cap_user_time_zero     : 1,
                   };
               };
               __u16 pmc_width;
               __u16 time_shift;
               __u32 time_mult;
               __u64 time_offset;
               __u64 __reserved[120];   /* Pad to 1k */
               __u64 data_head;         /* head in the data section */
               __u64 data_tail;         /* user-space written tail */
           }

       The  following  list  describes  the fields in the perf_event_mmap_page
       structure in more detail:

       version
              Version number of this structure.

       compat_version
              The lowest version this is compatible with.

       lock   A seqlock for synchronization.

       index  A unique hardware counter identifier.

       offset When using rdpmc for reads this offset value must  be  added  to
              the one returned by rdpmc to get the current total event count.

       time_enabled
              Time the event was active.

       time_running
              Time the event was running.

       cap_usr_time / cap_usr_rdpmc / cap_bit0 (since Linux 3.4)
              There   was   a  bug  in  the  definition  of  cap_usr_time  and
              cap_usr_rdpmc from Linux 3.4 until Linux 3.11.  Both  bits  were
              defined  to  point to the same location, so it was impossible to
              know if cap_usr_time or cap_usr_rdpmc were actually set.

              Starting with 3.12 these are renamed to cap_bit0 and you  should
              use the new cap_user_time and cap_user_rdpmc fields instead.

       cap_bit0_is_deprecated (since Linux 3.12)
              If set, this bit indicates that the kernel supports the properly
              separated cap_user_time and cap_user_rdpmc bits.

              If not-set, it indicates an older kernel where cap_usr_time  and
              cap_usr_rdpmc  map to the same bit and thus both features should
              be used with caution.

       cap_user_rdpmc (since Linux 3.12)
              If the hardware supports user-space read of performance counters
              without  syscall  (this is the "rdpmc" instruction on x86), then
              the following code can be used to do a read:

                  u32 seq, time_mult, time_shift, idx, width;
                  u64 count, enabled, running;
                  u64 cyc, time_offset;

                  do {
                      seq = pc->lock;
                      barrier();
                      enabled = pc->time_enabled;
                      running = pc->time_running;

                      if (pc->cap_usr_time && enabled != running) {
                          cyc = rdtsc();
                          time_offset = pc->time_offset;
                          time_mult   = pc->time_mult;
                          time_shift  = pc->time_shift;
                      }

                      idx = pc->index;
                      count = pc->offset;

                      if (pc->cap_usr_rdpmc && idx) {
                          width = pc->pmc_width;
                          count += rdpmc(idx - 1);
                      }

                      barrier();
                  } while (pc->lock != seq);

       cap_user_time  (since Linux 3.12)
              This bit indicates the hardware has a  constant,  nonstop  time-
              stamp counter (TSC on x86).

       cap_user_time_zero (since Linux 3.12)
              Indicates  the  presence of time_zero which allows mapping time-
              stamp values to the hardware clock.

       pmc_width
              If cap_usr_rdpmc, this field provides the bit-width of the value
              read  using  the  rdpmc  or equivalent instruction.  This can be
              used to sign extend the result like:

                  pmc <<= 64 - pmc_width;
                  pmc >>= 64 - pmc_width; // signed shift right
                  count += pmc;

       time_shift, time_mult, time_offset

              If cap_usr_time, these fields can be used to  compute  the  time
              delta  since  time_enabled (in nanoseconds) using rdtsc or simi-
              lar.

                  u64 quot, rem;
                  u64 delta;
                  quot = (cyc >> time_shift);
                  rem = cyc & ((1 << time_shift) - 1);
                  delta = time_offset + quot * time_mult +
                          ((rem * time_mult) >> time_shift);

              Where time_offset, time_mult, time_shift, and cyc  are  read  in
              the seqcount loop described above.  This delta can then be added
              to enabled and possible running (if idx), improving the scaling:

                  enabled += delta;
                  if (idx)
                      running += delta;
                  quot = count / running;
                  rem  = count % running;
                  count = quot * enabled + (rem * enabled) / running;

       time_zero (since Linux 3.12)

              If cap_usr_time_zero is set, then the hardware  clock  (the  TSC
              timestamp  counter on x86) can be calculated from the time_zero,
              time_mult, and time_shift values:

                  time = timestamp - time_zero;
                  quot = time / time_mult;
                  rem  = time % time_mult;
                  cyc = (quot << time_shift) + (rem << time_shift) / time_mult;

              And vice versa:

                  quot = cyc >> time_shift;
                  rem  = cyc & ((1 << time_shift) - 1);
                  timestamp = time_zero + quot * time_mult +
                      ((rem * time_mult) >> time_shift);

       data_head
              This points to the head of the data section.  The value continu-
              ously  increases, it does not wrap.  The value needs to be manu-
              ally wrapped by the size of the mmap buffer before accessing the
              samples.

              On  SMP-capable  platforms,  after  reading the data_head value,
              user space should issue an rmb().

       data_tail
              When the mapping is PROT_WRITE, the data_tail  value  should  be
              written  by  user  space to reflect the last read data.  In this
              case, the kernel will not overwrite unread data.

       The following 2^n ring-buffer pages have the layout described below.

       If perf_event_attr.sample_id_all is set, then all event types will have
       the  sample_type  selected  fields  related to where/when (identity) an
       event  took  place  (TID,  TIME,  ID,  CPU,  STREAM_ID)  described   in
       PERF_RECORD_SAMPLE   below,   it   will   be  stashed  just  after  the
       perf_event_header and the  fields  already  present  for  the  existing
       fields, that is, at the end of the payload.  That way a newer perf.data
       file will be supported by older perf tools,  with  these  new  optional
       fields being ignored.

       The mmap values start with a header:

           struct perf_event_header {
               __u32   type;
               __u16   misc;
               __u16   size;
           };

       Below,  we  describe  the perf_event_header fields in more detail.  For
       ease of reading, the fields with  shorter  descriptions  are  presented
       first.

       size   This indicates the size of the record.

       misc   The misc field contains additional information about the sample.

              The  CPU  mode can be determined from this value by masking with
              PERF_RECORD_MISC_CPUMODE_MASK and looking for one of the follow-
              ing  (note  these  are  not  bit masks, only one can be set at a
              time):

              PERF_RECORD_MISC_CPUMODE_UNKNOWN
                     Unknown CPU mode.

              PERF_RECORD_MISC_KERNEL
                     Sample happened in the kernel.

              PERF_RECORD_MISC_USER
                     Sample happened in user code.

              PERF_RECORD_MISC_HYPERVISOR
                     Sample happened in the hypervisor.

              PERF_RECORD_MISC_GUEST_KERNEL
                     Sample happened in the guest kernel.

              PERF_RECORD_MISC_GUEST_USER
                     Sample happened in guest user code.

              In addition, one of the following bits can be set:

              PERF_RECORD_MISC_MMAP_DATA
                     This is set when the mapping is not executable; otherwise
                     the mapping is executable.

              PERF_RECORD_MISC_EXACT_IP
                     This  indicates that the content of PERF_SAMPLE_IP points
                     to the actual instruction that triggered the event.   See
                     also perf_event_attr.precise_ip.

              PERF_RECORD_MISC_EXT_RESERVED
                     This  indicates  there  is  extended data available (cur-
                     rently not used).

       type   The type value is one of the below.  The values  in  the  corre-
              sponding  record  (that  follows  the header) depend on the type
              selected as shown.

              PERF_RECORD_MMAP
                  The MMAP events record the PROT_EXEC mappings so that we can
                  correlate  user-space  IPs to code.  They have the following
                  structure:

                      struct {
                          struct perf_event_header header;
                          u32    pid, tid;
                          u64    addr;
                          u64    len;
                          u64    pgoff;
                          char   filename[];
                      };

              PERF_RECORD_LOST
                  This record indicates when events are lost.

                      struct {
                          struct perf_event_header header;
                          u64 id;
                          u64 lost;
                          struct sample_id sample_id;
                      };

                  id     is the unique event ID  for  the  samples  that  were
                         lost.

                  lost   is the number of events that were lost.

              PERF_RECORD_COMM
                  This record indicates a change in the process name.

                      struct {
                          struct perf_event_header header;
                          u32 pid, tid;
                          char comm[];
                          struct sample_id sample_id;
                      };

              PERF_RECORD_EXIT
                  This record indicates a process exit event.

                      struct {
                          struct perf_event_header header;
                          u32 pid, ppid;
                          u32 tid, ptid;
                          u64 time;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_THROTTLE, PERF_RECORD_UNTHROTTLE
                  This record indicates a throttle/unthrottle event.

                      struct {
                          struct perf_event_header header;
                          u64 time;
                          u64 id;
                          u64 stream_id;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_FORK
                  This record indicates a fork event.

                      struct {
                          struct perf_event_header header;
                          u32 pid, ppid;
                          u32 tid, ptid;
                          u64 time;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_READ
                  This record indicates a read event.

                      struct {
                          struct perf_event_header header;
                          u32 pid, tid;
                          struct read_format values;
                          struct sample_id sample_id;
                      };

              PERF_RECORD_SAMPLE
                  This record indicates a sample.

                      struct {
                          struct perf_event_header header;
                          u64   sample_id;  /* if PERF_SAMPLE_IDENTIFIER */
                          u64   ip;         /* if PERF_SAMPLE_IP */
                          u32   pid, tid;   /* if PERF_SAMPLE_TID */
                          u64   time;       /* if PERF_SAMPLE_TIME */
                          u64   addr;       /* if PERF_SAMPLE_ADDR */
                          u64   id;         /* if PERF_SAMPLE_ID */
                          u64   stream_id;  /* if PERF_SAMPLE_STREAM_ID */
                          u32   cpu, res;   /* if PERF_SAMPLE_CPU */
                          u64   period;     /* if PERF_SAMPLE_PERIOD */
                          struct read_format v; /* if PERF_SAMPLE_READ */
                          u64   nr;         /* if PERF_SAMPLE_CALLCHAIN */
                          u64   ips[nr];    /* if PERF_SAMPLE_CALLCHAIN */
                          u32   size;       /* if PERF_SAMPLE_RAW */
                          char  data[size]; /* if PERF_SAMPLE_RAW */
                          u64   bnr;        /* if PERF_SAMPLE_BRANCH_STACK */
                          struct perf_branch_entry lbr[bnr];
                                            /* if PERF_SAMPLE_BRANCH_STACK */
                          u64   abi;        /* if PERF_SAMPLE_REGS_USER */
                          u64   regs[weight(mask)];
                                            /* if PERF_SAMPLE_REGS_USER */
                          u64   size;       /* if PERF_SAMPLE_STACK_USER */
                          char  data[size]; /* if PERF_SAMPLE_STACK_USER */
                          u64   dyn_size;   /* if PERF_SAMPLE_STACK_USER */
                          u64   weight;     /* if PERF_SAMPLE_WEIGHT */
                          u64   data_src;   /* if PERF_SAMPLE_DATA_SRC */
                          u64   transaction;/* if PERF_SAMPLE_TRANSACTION */
                      };

                  sample_id
                      If PERF_SAMPLE_IDENTIFIER is enabled, a 64-bit unique ID
                      is included.  This is a  duplication  of  the  PERF_SAM-
                      PLE_ID  id  value,  but included at the beginning of the
                      sample so parsers can easily obtain the value.

                  ip  If PERF_SAMPLE_IP is enabled, then a 64-bit  instruction
                      pointer value is included.

                  pid, tid
                      If  PERF_SAMPLE_TID is enabled, then a 32-bit process ID
                      and 32-bit thread ID are included.

                  time
                      If PERF_SAMPLE_TIME is enabled, then a 64-bit  timestamp
                      is  included.   This is obtained via local_clock() which
                      is a hardware timestamp if  available  and  the  jiffies
                      value if not.

                  addr
                      If PERF_SAMPLE_ADDR is enabled, then a 64-bit address is
                      included.  This is usually the address of a  tracepoint,
                      breakpoint, or software event; otherwise the value is 0.

                  id  If  PERF_SAMPLE_ID  is  enabled,  a  64-bit unique ID is
                      included.  If the event is a member of an  event  group,
                      the group leader ID is returned.  This ID is the same as
                      the one returned by PERF_FORMAT_ID.

                  stream_id
                      If PERF_SAMPLE_STREAM_ID is enabled, a 64-bit unique  ID
                      is  included.   Unlike  PERF_SAMPLE_ID  the actual ID is
                      returned, not the group leader.  This ID is the same  as
                      the one returned by PERF_FORMAT_ID.

                  cpu, res
                      If  PERF_SAMPLE_CPU  is  enabled, this is a 32-bit value
                      indicating which CPU was being used, in  addition  to  a
                      reserved (unused) 32-bit value.

                  period
                      If  PERF_SAMPLE_PERIOD  is enabled, a 64-bit value indi-
                      cating the current sampling period is written.

                  v   If PERF_SAMPLE_READ is  enabled,  a  structure  of  type
                      read_format  is included which has values for all events
                      in the event group.  The values included depend  on  the
                      read_format value used at perf_event_open() time.

                  nr, ips[nr]
                      If  PERF_SAMPLE_CALLCHAIN is enabled, then a 64-bit num-
                      ber is  included  which  indicates  how  many  following
                      64-bit  instruction  pointers  will follow.  This is the
                      current callchain.

                  size, data[size]
                      If PERF_SAMPLE_RAW is enabled, then a 32-bit value indi-
                      cating  size  is  included followed by an array of 8-bit
                      values of length size.  The values are padded with 0  to
                      have 64-bit alignment.

                      This  RAW record data is opaque with respect to the ABI.
                      The ABI doesn't make any promises with  respect  to  the
                      stability  of  its  content,  it  may  vary depending on
                      event, hardware, and kernel version.

                  bnr, lbr[bnr]
                      If PERF_SAMPLE_BRANCH_STACK is enabled,  then  a  64-bit
                      value indicating the number of records is included, fol-
                      lowed by bnr  perf_branch_entry  structures  which  each
                      include the fields:

                      from   This indicates the source instruction (may not be
                             a branch).

                      to     The branch target.

                      mispred
                             The branch target was mispredicted.

                      predicted
                             The branch target was predicted.

                      in_tx (since Linux 3.11)
                             The branch was in a transactional memory transac-
                             tion.

                      abort (since Linux 3.11)
                             The branch was in an aborted transactional memory
                             transaction.

                      The entries are from most to least recent, so the  first
                      entry has the most recent branch.

                      Support  for  mispred  and predicted is optional; if not
                      supported, both values will be 0.

                      The type  of  branches  recorded  is  specified  by  the
                      branch_sample_type field.

                  abi, regs[weight(mask)]
                      If  PERF_SAMPLE_REGS_USER  is enabled, then the user CPU
                      registers are recorded.

                      The  abi  field  is  one  of  PERF_SAMPLE_REGS_ABI_NONE,
                      PERF_SAMPLE_REGS_ABI_32 or PERF_SAMPLE_REGS_ABI_64.

                      The  regs  field  is  an array of the CPU registers that
                      were specified by the sample_regs_user attr field.   The
                      number  of  values is the number of bits set in the sam-
                      ple_regs_user bit mask.

                  size, data[size], dyn_size
                      If PERF_SAMPLE_STACK_USER is enabled,  then  record  the
                      user  stack  to  enable  backtracing.   size is the size
                      requested by the user in  stack_user_size  or  else  the
                      maximum  record size.  data is the stack data.  dyn_size
                      is the amount of data actually dumped (can be less  than
                      size).

                  weight
                      If  PERF_SAMPLE_WEIGHT  is  enabled, then a 64-bit value
                      provided by the hardware is recorded that indicates  how
                      costly  the  event was.  This allows expensive events to
                      stand out more clearly in profiles.

                  data_src
                      If PERF_SAMPLE_DATA_SRC is enabled, then a 64-bit  value
                      is recorded that is made up of the following fields:

                      mem_op
                          Type of opcode, a bitwise combination of:

                          PERF_MEM_OP_NA          Not available
                          PERF_MEM_OP_LOAD        Load instruction
                          PERF_MEM_OP_STORE       Store instruction
                          PERF_MEM_OP_PFETCH      Prefetch
                          PERF_MEM_OP_EXEC        Executable code

                      mem_lvl
                          Memory hierarchy level hit or miss, a bitwise combi-
                          nation of:

                          PERF_MEM_LVL_NA         Not available
                          PERF_MEM_LVL_HIT        Hit
                          PERF_MEM_LVL_MISS       Miss
                          PERF_MEM_LVL_L1         Level 1 cache
                          PERF_MEM_LVL_LFB        Line fill buffer
                          PERF_MEM_LVL_L2         Level 2 cache
                          PERF_MEM_LVL_L3         Level 3 cache
                          PERF_MEM_LVL_LOC_RAM    Local DRAM
                          PERF_MEM_LVL_REM_RAM1   Remote DRAM 1 hop
                          PERF_MEM_LVL_REM_RAM2   Remote DRAM 2 hops
                          PERF_MEM_LVL_REM_CCE1   Remote cache 1 hop
                          PERF_MEM_LVL_REM_CCE2   Remote cache 2 hops
                          PERF_MEM_LVL_IO         I/O memory
                          PERF_MEM_LVL_UNC        Uncached memory

                      mem_snoop
                          Snoop mode, a bitwise combination of:

                          PERF_MEM_SNOOP_NA       Not available
                          PERF_MEM_SNOOP_NONE     No snoop
                          PERF_MEM_SNOOP_HIT      Snoop hit
                          PERF_MEM_SNOOP_MISS     Snoop miss
                          PERF_MEM_SNOOP_HITM     Snoop hit modified

                      mem_lock
                          Lock instruction, a bitwise combination of:

                          PERF_MEM_LOCK_NA        Not available
                          PERF_MEM_LOCK_LOCKED    Locked transaction

                      mem_dtlb
                          TLB access hit or miss, a bitwise combination of:

                          PERF_MEM_TLB_NA         Not available
                          PERF_MEM_TLB_HIT        Hit
                          PERF_MEM_TLB_MISS       Miss
                          PERF_MEM_TLB_L1         Level 1 TLB
                          PERF_MEM_TLB_L2         Level 2 TLB
                          PERF_MEM_TLB_WK         Hardware walker
                          PERF_MEM_TLB_OS         OS fault handler

                  transaction
                      If the  PERF_SAMPLE_TRANSACTION  flag  is  set,  then  a
                      64-bit  field  is recorded describing the sources of any
                      transactional memory aborts.

                      The field is a bitwise combination of the following val-
                      ues:

                      PERF_TXN_ELISION
                             Abort  from  an  elision type transaction (Intel-
                             CPU-specific).

                      PERF_TXN_TRANSACTION
                             Abort from a generic transaction.

                      PERF_TXN_SYNC
                             Synchronous  abort  (related  to   the   reported
                             instruction).

                      PERF_TXN_ASYNC
                             Asynchronous  abort  (not related to the reported
                             instruction).

                      PERF_TXN_RETRY
                             Retryable abort  (retrying  the  transaction  may
                             have succeeded).

                      PERF_TXN_CONFLICT
                             Abort due to memory conflicts with other threads.

                      PERF_TXN_CAPACITY_WRITE
                             Abort due to write capacity overflow.

                      PERF_TXN_CAPACITY_READ
                             Abort due to read capacity overflow.

                      In addition, a user-specified abort code can be obtained
                      from the high 32 bits of the field by shifting right  by
                      PERF_TXN_ABORT_SHIFT        and       masking       with
                      PERF_TXN_ABORT_MASK.

   Signal overflow
       Events can be set to deliver a signal when a threshold is crossed.  The
       signal  handler  is  set  up using the poll(2), select(2), epoll(2) and
       fcntl(2), system calls.

       To generate signals, sampling must be enabled (sample_period must  have
       a nonzero value).

       There are two ways to generate signals.

       The first is to set a wakeup_events or wakeup_watermark value that will
       generate a signal if a certain number of samples  or  bytes  have  been
       written  to  the  mmap  ring  buffer.   In  this case, a signal of type
       POLL_IN is sent.

       The other way is by use  of  the  PERF_EVENT_IOC_REFRESH  ioctl.   This
       ioctl  adds to a counter that decrements each time the event overflows.
       When nonzero, a POLL_IN signal is sent on overflow, but once the  value
       reaches  0,  a signal is sent of type POLL_HUP and the underlying event
       is disabled.

       Note: on newer kernels (definitely noticed with 3.2) a signal  is  pro-
       vided for every overflow, even if wakeup_events is not set.

   rdpmc instruction
       Starting  with  Linux  3.4 on x86, you can use the rdpmc instruction to
       get low-latency reads without having to enter the  kernel.   Note  that
       using  rdpmc  is  not necessarily faster than other methods for reading
       event values.

       Support for this can be detected with the cap_usr_rdpmc  field  in  the
       mmap  page; documentation on how to calculate event values can be found
       in that section.

   perf_event ioctl calls
       Various ioctls act on perf_event_open() file descriptors:

       PERF_EVENT_IOC_ENABLE
              This enables the individual event or event  group  specified  by
              the file descriptor argument.

              If  the  PERF_IOC_FLAG_GROUP  bit  is set in the ioctl argument,
              then all events in a group are enabled, even if the event speci-
              fied is not the group leader (but see BUGS).

       PERF_EVENT_IOC_DISABLE
              This disables the individual counter or event group specified by
              the file descriptor argument.

              Enabling or disabling the leader of a group enables or  disables
              the  entire  group; that is, while the group leader is disabled,
              none of the counters in the group will count.  Enabling or  dis-
              abling  a  member  of a group other than the leader affects only
              that counter; disabling a non-leader  stops  that  counter  from
              counting but doesn't affect any other counter.

              If  the  PERF_IOC_FLAG_GROUP  bit  is set in the ioctl argument,
              then all events in a group are disabled, even if the event spec-
              ified is not the group leader (but see BUGS).

       PERF_EVENT_IOC_REFRESH
              Non-inherited overflow counters can use this to enable a counter
              for a number of overflows specified by the argument, after which
              it is disabled.  Subsequent calls of this ioctl add the argument
              value to the current count.  A signal with POLL_IN set will hap-
              pen  on  each overflow until the count reaches 0; when that hap-
              pens a signal with POLL_HUP set is sent and the  event  is  dis-
              abled.  Using an argument of 0 is considered undefined behavior.

       PERF_EVENT_IOC_RESET
              Reset  the event count specified by the file descriptor argument
              to zero.  This resets only the counts; there is no way to  reset
              the multiplexing time_enabled or time_running values.

              If  the  PERF_IOC_FLAG_GROUP  bit  is set in the ioctl argument,
              then all events in a group are reset, even if the  event  speci-
              fied is not the group leader (but see BUGS).

       PERF_EVENT_IOC_PERIOD
              This updates the overflow period for the event.

              Since  Linux  3.7  (on  ARM) and Linux 3.14 (all other architec-
              tures), the new period takes effect immediately.  On older  ker-
              nels,  the  new  period did not take effect until after the next
              overflow.

              The argument is a pointer  to  a  64-bit  value  containing  the
              desired new period.

              Prior  to  Linux 2.6.36 this ioctl always failed due to a bug in
              the kernel.

       PERF_EVENT_IOC_SET_OUTPUT
              This tells the kernel to report event notifications to the spec-
              ified  file  descriptor  rather  than the default one.  The file
              descriptors must all be on the same CPU.

              The argument specifies the desired file  descriptor,  or  -1  if
              output should be ignored.

       PERF_EVENT_IOC_SET_FILTER (since Linux 2.6.33)
              This adds an ftrace filter to this event.

              The argument is a pointer to the desired ftrace filter.

       PERF_EVENT_IOC_ID (since Linux 3.12)
              This  returns  the  event  ID  value  for  the  given event file
              descriptor.

              The argument is a pointer to a 64-bit unsigned integer  to  hold
              the result.

   Using prctl
       A  process can enable or disable all the event groups that are attached
       to   it   using    the    prctl(2)    PR_TASK_PERF_EVENTS_ENABLE    and
       PR_TASK_PERF_EVENTS_DISABLE  operations.   This applies to all counters
       on the calling process, whether created by this process or by  another,
       and does not affect any counters that this process has created on other
       processes.  It enables or disables only  the  group  leaders,  not  any
       other members in the groups.

   perf_event related configuration files
       Files in /proc/sys/kernel/

           /proc/sys/kernel/perf_event_paranoid

                  The  perf_event_paranoid  file can be set to restrict access
                  to the performance counters.

                  2   only allow user-space measurements.

                  1   allow both kernel and user measurements (default).

                  0   allow access to CPU-specific data but not raw tracepoint
                      samples.

                  -1  no restrictions.

                  The  existence  of the perf_event_paranoid file is the offi-
                  cial  method  for   determining   if   a   kernel   supports
                  perf_event_open().

           /proc/sys/kernel/perf_event_max_sample_rate

                  This  sets  the  maximum sample rate.  Setting this too high
                  can allow users to sample at a  rate  that  impacts  overall
                  machine  performance  and  potentially  lock up the machine.
                  The default value is 100000 (samples per second).

           /proc/sys/kernel/perf_event_mlock_kb

                  Maximum number of pages an unprivileged user  can  mlock(2).
                  The default is 516 (kB).

       Files in /sys/bus/event_source/devices/
           Since Linux 2.6.34, the kernel supports having multiple PMUs avail-
           able for monitoring.  Information on how to program these PMUs  can
           be  found  under /sys/bus/event_source/devices/.  Each subdirectory
           corresponds to a different PMU.

           /sys/bus/event_source/devices/*/type (since Linux 2.6.38)
                  This contains an integer that can be used in the type  field
                  of  perf_event_attr  to  indicate  that you wish to use this
                  PMU.

           /sys/bus/event_source/devices/*/rdpmc (since Linux 3.4)
                  If this file is 1, then direct user-space access to the per-
                  formance counter registers is allowed via the rdpmc instruc-
                  tion.  This can be disabled by echoing 0 to the file.

           /sys/bus/event_source/devices/*/format/ (since Linux 3.4)
                  This subdirectory contains information on the  architecture-
                  specific  subfields  available  for  programming the various
                  config fields in the perf_event_attr struct.

                  The content of each file is the name of  the  config  field,
                  followed  by  a  colon,  followed by a series of integer bit
                  ranges separated by commas.  For example, the file event may
                  contain  the  value  config1:1,6-10,44  which indicates that
                  event is an attribute that occupies bits 1,6-10, and  44  of
                  perf_event_attr::config1.

           /sys/bus/event_source/devices/*/events/ (since Linux 3.4)
                  This  subdirectory  contains  files  with predefined events.
                  The contents  are  strings  describing  the  event  settings
                  expressed  in  terms  of  the fields found in the previously
                  mentioned ./format/ directory.  These  are  not  necessarily
                  complete lists of all events supported by a PMU, but usually
                  a subset of events deemed useful or interesting.

                  The content of each file is a list of attribute names  sepa-
                  rated  by  commas.  Each entry has an optional value (either
                  hex or decimal).  If no  value  is  specified,  then  it  is
                  assumed  to  be  a  single-bit  field with a value of 1.  An
                  example entry may look like this: event=0x2,inv,ldlat=3.

           /sys/bus/event_source/devices/*/uevent
                  This file  is  the  standard  kernel  device  interface  for
                  injecting hotplug events.

           /sys/bus/event_source/devices/*/cpumask (since Linux 3.7)
                  The cpumask file contains a comma-separated list of integers
                  that indicate a representative CPU number  for  each  socket
                  (package)  on  the motherboard.  This is needed when setting
                  up uncore or  northbridge  events,  as  those  PMUs  present
                  socket-wide events.

RETURN VALUE
       perf_event_open()  returns  the  new file descriptor, or -1 if an error
       occurred (in which case, errno is set appropriately).

ERRORS
       The errors returned by perf_event_open() can be inconsistent,  and  may
       vary across processor architectures and performance monitoring units.

       E2BIG  Returned if the perf_event_attr size value is too small (smaller
              than PERF_ATTR_SIZE_VER0), too big (larger than the page  size),
              or  larger  than the kernel supports and the extra bytes are not
              zero.  When E2BIG is returned, the perf_event_attr size field is
              overwritten by the kernel to be the size of the structure it was
              expecting.

       EACCES Returned when the requested event requires CAP_SYS_ADMIN permis-
              sions  (or a more permissive perf_event paranoid setting).  Some
              common cases where an unprivileged process  may  encounter  this
              error:  attaching  to a process owned by a different user; moni-
              toring all processes on a given CPU (i.e.,  specifying  the  pid
              argument  as  -1); and not setting exclude_kernel when the para-
              noid setting requires it.

       EBADF  Returned if the group_fd file descriptor is not  valid,  or,  if
              PERF_FLAG_PID_CGROUP  is  set, the cgroup file descriptor in pid
              is not valid.

       EFAULT Returned if  the  attr  pointer  points  at  an  invalid  memory
              address.

       EINVAL Returned if the specified event is invalid.  There are many pos-
              sible reasons for this.  A not-exhaustive list:  sample_freq  is
              higher  than  the  maximum  setting; the cpu to monitor does not
              exist; read_format is out of range; sample_type is out of range;
              the flags value is out of range; exclusive or pinned set and the
              event is not a group leader; the event config values are out  of
              range  or  set  reserved bits; the generic event selected is not
              supported; or there is not  enough  room  to  add  the  selected
              event.

       EMFILE Each  opened  event uses one file descriptor.  If a large number
              of events are opened the per-user file descriptor  limit  (often
              1024) will be hit and no more events can be created.

       ENODEV Returned  when the event involves a feature not supported by the
              current CPU.

       ENOENT Returned if the type setting is not valid.  This error  is  also
              returned for some unsupported generic events.

       ENOSPC Prior  to Linux 3.3, if there was not enough room for the event,
              ENOSPC was returned.  In Linux 3.3, this was changed to  EINVAL.
              ENOSPC  is  still  returned  if  you  try to add more breakpoint
              events than supported by the hardware.

       ENOSYS Returned if PERF_SAMPLE_STACK_USER is set in sample_type and  it
              is not supported by hardware.

       EOPNOTSUPP
              Returned  if  an  event requiring a specific hardware feature is
              requested but there  is  no  hardware  support.   This  includes
              requesting  low-skid  events if not supported, branch tracing if
              it is not available, sampling if no PMU interrupt is  available,
              and branch stacks for software events.

       EPERM  Returned on many (but not all) architectures when an unsupported
              exclude_hv, exclude_idle, exclude_user, or  exclude_kernel  set-
              ting is specified.

              It  can  also  happen,  as with EACCES, when the requested event
              requires  CAP_SYS_ADMIN  permissions  (or  a   more   permissive
              perf_event  paranoid  setting).   This includes setting a break-
              point on a kernel address, and (since Linux 3.13) setting a ker-
              nel function-trace tracepoint.

       ESRCH  Returned  if  attempting  to  attach  to a process that does not
              exist.

VERSION
       perf_event_open()  was  introduced  in  Linux  2.6.31  but  was  called
       perf_counter_open().  It was renamed in Linux 2.6.32.

CONFORMING TO
       This  perf_event_open()  system  call Linux- specific and should not be
       used in programs intended to be portable.

NOTES
       Glibc does not provide a wrapper for this system call;  call  it  using
       syscall(2).  See the example below.

       The  official way of knowing if perf_event_open() support is enabled is
       checking   for   the   existence    of    the    file    /proc/sys/ker-
       nel/perf_event_paranoid.

BUGS
       The  F_SETOWN_EX  option to fcntl(2) is needed to properly get overflow
       signals in threads.  This was introduced in Linux 2.6.32.

       Prior to Linux 2.6.33 (at least for x86), the kernel did not  check  if
       events  could  be scheduled together until read time.  The same happens
       on all known kernels if the NMI watchdog is enabled.  This means to see
       if  a  given  set of events works you have to perf_event_open(), start,
       then read before you know for sure you can get valid measurements.

       Prior to Linux 2.6.34, event constraints were not enforced by the  ker-
       nel.  In that case, some events would silently return "0" if the kernel
       scheduled them in an improper counter slot.

       Prior to Linux 2.6.34, there was a  bug  when  multiplexing  where  the
       wrong results could be returned.

       Kernels  from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel
       if "inherit" is enabled and many threads are started.

       Prior to Linux 2.6.35, PERF_FORMAT_GROUP did  not  work  with  attached
       processes.

       In older Linux 2.6 versions, refreshing an event group leader refreshed
       all siblings, and refreshing with a parameter  of  0  enabled  infinite
       refresh.  This behavior is unsupported and should not be relied on.

       There  is  a  bug in the kernel code between Linux 2.6.36 and Linux 3.0
       that ignores the "watermark" field and acts as if  a  wakeup_event  was
       chosen if the union has a nonzero value in it.

       From  Linux 2.6.31 to Linux 3.4, the PERF_IOC_FLAG_GROUP ioctl argument
       was broken and would repeatedly operate on the event  specified  rather
       than iterating across all sibling events in a group.

       From  Linux  3.4 to Linux 3.11, the mmap cap_usr_rdpmc and cap_usr_time
       bits mapped to the same location.   Code  should  migrate  to  the  new
       cap_user_rdpmc and cap_user_time fields instead.

       Always  double-check your results!  Various generalized events have had
       wrong values.  For example, retired branches measured the  wrong  thing
       on AMD machines until Linux 2.6.35.

EXAMPLE
       The  following  is  a short example that measures the total instruction
       count of a call to printf(3).

       #include <stdlib.h>
       #include <stdio.h>
       #include <unistd.h>
       #include <string.h>
       #include <sys/ioctl.h>
       #include <linux/perf_event.h>
       #include <asm/unistd.h>

       static long
       perf_event_open(struct perf_event_attr *hw_event, pid_t pid,
                       int cpu, int group_fd, unsigned long flags)
       {
           int ret;

           ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
                          group_fd, flags);
           return ret;
       }

       int
       main(int argc, char **argv)
       {
           struct perf_event_attr pe;
           long long count;
           int fd;

           memset(&pe, 0, sizeof(struct perf_event_attr));
           pe.type = PERF_TYPE_HARDWARE;
           pe.size = sizeof(struct perf_event_attr);
           pe.config = PERF_COUNT_HW_INSTRUCTIONS;
           pe.disabled = 1;
           pe.exclude_kernel = 1;
           pe.exclude_hv = 1;

           fd = perf_event_open(&pe, 0, -1, -1, 0);
           if (fd == -1) {
              fprintf(stderr, "Error opening leader %llx\n", pe.config);
              exit(EXIT_FAILURE);
           }

           ioctl(fd, PERF_EVENT_IOC_RESET, 0);
           ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

           printf("Measuring instruction count for this printf\n");

           ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
           read(fd, &count, sizeof(long long));

           printf("Used %lld instructions\n", count);

           close(fd);
       }

SEE ALSO
       fcntl(2), mmap(2), open(2), prctl(2), read(2)

COLOPHON
       This page is part of release 3.69 of the Linux  man-pages  project.   A
       description  of  the project, information about reporting bugs, and the
       latest    version    of    this    page,    can     be     found     at
       http://www.kernel.org/doc/man-pages/.

Linux                             2014-04-17                PERF_EVENT_OPEN(2)

Want to link to this manual page? Use this URL:
<
http://star2.abcm.com/cgi-bin/bsdi-man?query=perf_event_open&sektion=2&manpath=>

home | help