

Vi

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND
SOFTWARE PURCHASEQ FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL
STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZEO LOCATIONS

USA LIMITED WARRANTY
CUSTOMER 0BLIGATIONS

CUSTOMER assumes full responsibility that this computer hardware purchased (the “Equipment”), and any
capies of software included with the Equipment or licensed segara\e\y (the "“Software'') meets the specifications,
capacity, capabilities. versatility, and other requirements of CUSTOMER

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

LIMITED WARRANTIES ANO CONDITIONS QF SALE

A, For a period of ninety (90} calendar days from the date of the Radio Shack sales document received upon
purchase of the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. This warranty is only applicable
to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer
centers, retail stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is
void if the Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect is
discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack
Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a participating Radio Shack
dealer tor repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and
exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or
refund of the purchase price, at RAGIO SHACK'S election and sole expense. RADIO SHACK has no obligation to
replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
except as provided in this paragraph. Software is licensed on an "AS IS" basis, without warranty. The ougmal

CUSTOMER'S exclusive remedy, in the event of a Software manufacturing defect, is ‘ts repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RAOIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPDSE (S LIMITED IN ITS DURATION
TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FDRTH HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIOEO HEREIN, RADIO SHACK SHALL HAVE ND LIABILITY OR RESPONSIBILITY TO CUSTOMER
OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS DR DAMAGE CAUSED OR
ALLEGEO TO BE CAUSED DIRECTLY DR INOIRECTLY BY “EQUIPMENT” OR “SOFTWARE” SOLD, LEASED,
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION DF
SERVICE, LDSS OF BUSINESS OR ANTICIPATORY PROFITS DR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR DPERATION DF THE “‘EQUIPMENT” OR “SOFTWARE.” IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PRDFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LIGENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT"” DR ""SOFTWARE.”

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADID SHACK'S LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR “EQUIPMENT” OR "'SOFTWARE" INVOLVEQ.

B. fs?AfDIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment andor

oftware.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two ?2) years after the cause of action has accrued or mare than four (4) years after the date of the
Radio Shack sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer,

subject to the following provisions:

A, Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassefte and/or diskette} or stored (ROM) is transferred to
CUSTOMER, but not title to the Software

C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled
to be for use on a multiuser or network system, or one copy of this software is purchased for each node or
terminal on which Software is to be used simultaneously.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer
gnd as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the

oftware.

E. CUSTOMER is permitted to make additional copies of the Software enly for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may reseil or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions of this Software License shall also be
applicable to third parties receiving copies of the Software from CUSTOMER

G. Al copyright notices shall be retained on all copies of the Software.

APPLICABILITY DF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a
sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may

have other rights which vary from state to state. 4/87

08S-9 Level Two Software:
© 1987 Microware Systems Corporation.
Licensed to Tandy Corporation. All rights Reserved.

08-9 Level Two Development System Software:
© 1987 Tandy Corporation.
All rights Reserved.

08S-9 Level Two Development System Documentation:
Interactive Debugger, Screen Editor, Relocating Macro Assembler, Utilities, Commands
© 1987 Tandy Corporation.
All rights Reserved.

Reproduction or use of any portion of this manual without express written permission
from Tandy Corporation is prohibited. While reasonable efforts have been taken in the
preparation of this manuals to assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors in or omissions from this manuals, or from the use of
the information contained herein.

Tandy and the Tandy logo are registered trademarks of Tandy Corporation.

Motorola is a registered trademark of Motorola Inc.

10987654321

Contents

This manual contains documents for:

Interactive Debugger

A program to aid in diagnosing system programs, testing machine
language programs and to gain access to your computer's
memory.

Screen Editor
A screen-oriented text editor for preparing letters, documents, and
for writing OS-9 programs.

Relocating Macro Assembler
A full-featured macro assembler and linkage editor.

Utilities

Three utility programs: Make, to help maintain current version
software; Touch, to update files; and VDD, a Virtual Disk
Driver/RAM Disk Driver to create a high-speed storage in your
systems RAM.

Commands
Twelve additional OS-9 commands to expand your system's

capabilities.

Each document contains its own table of contents.

Interactive Debugger

Contents

Chapter 1/ Introductioncccceevvieieresiennieeereeeeen. 1-1
Calling DEbUEovvirieeiiieiereceeee e 1-1
Basic ConCEPLSeeevrmieiiieeiecie et 1-1

Chapter 2 / EXPIesSionsccccccceivvieeivricieenrreenreeseeracenens 2-1
L6707 11 7: 1 11 1 J USSP 2-1
Special NameScveiviiiieiiieiieeeecccceereee e e e eee e 2-2
Register Namesccceuieeeiriiieiiieeeeeiceree e, 2-3
10015 £2110) £ JRUUE OV R PSRRI 2-3
Forming EXPIressionscccccveeeriieenivieneniesecneeeeceneaennen, 2-4
Indirect Addressingocoeeeeviiiiiiiiiiieee e, 2-4

Chapter 3/ Debug Commandsc..ccecceeeveeenrveennnnnncnn. 3-1
Calculator Commandscocceevvueeerieeeneeneereseceneeenn 3-1
Dot and Memory Examine/Change Commands 3-2

Incrementing Dotccccveiiiiiericiee e, 3-3
Decrementing Dot ..., 3-3
Changing Dotcccoocciiiieiiieieeee e 3-3
Changing Dot's CONtentscccecueeeeiveeneerernereenne. 3-4
Register Examine/Change Commandccccveveeeeennns 3-5
Breakpoint Commandscoecocuveeeeiiriiienreieeeeeeeeenneees 3-7
Setting Breakpointsccocccceeviveiriniinicceniiiieeeeane 3-8
Removing Breakpointsccccceveveivieniiiiriiecineneen, 3-8
Program Setup and Run Commandscccocceerrinennnenn. 3-9
Goto Commandccceeveeeiiiiniieeeninieeceneee 3-10

Link Commandcoccovveiiiiiionriionn i e eeeraneneens 3-10

Interactive Debugger Contents

Utility Commandscccceeeeeeeeiinnieeeeiiiieeeeeeeeeeeee, 3-11
Clearing MEmOTYccceeveeeeiieeiiiinieeee e, 3-11
Displaying Memoryccccccevvcvreernceeinnivrensnneenn. 3-12
Searching Memoryccccoceeeiiiiiiiiiieeeeecccirree e, 3-12
Shell Commandcccoovvviiiiiiiiicciiieee e, 3-12
Quitting Debugoooieee e 3-13

Chapter 4/ Using Debugcccooeevvevvenencecceeecieeveene 4-1

Sample Programcoooieiiiiniiiiieee e 4-1

USing Debugcccvviriiiiiieieceiiiee et e 4-4

Patching Programscoocoiiiiiiiiniiriee e, 4-7
Patching OS-9 Component Modules 4-8

Chapter 5/ Debug Command Summary
and Error Codesc..ooocvviiiiiiiiiiieec e 5-1

Debug Command Summaryccccceeeeeeeecccinnniveeneanns 5-1
Dot Commandscceeveeeeeiiiiiieeiiiiiiirereeeeeeee e, 5-1
Register Commandsccccceeeieeeieeieeeeeeeeeeieiicennn. 5-2
Program Setup and Run Commands 5-2
Breakpoint Commandsccceeevveevennnnieenecciieeeennns 5-2

Utility Commands
Debug Error Codesuueveiiieeeeiiiiiceeeeeeeeereeeeeeeeeeeenans 5-3

Chapter 1

Introduction

Debug is an interactive debugger that aids in diagnosing system
programs and testing machine-language programs for the 6809 micro-
processor. You can also use it to gain direct access to the computer's
memory. Debug's calculator mode can simplify address computation,
radix conversion, and other mathematical problems.

Calling Debug

To run Debug, type the following command at the OS-9 system
prompt:

DEBUG [ENTER]

Basic Concepts

Debug responds to 1-line commands entered from the keyboard. The
screen shows the DB: prompt when Debug expects a command.

Terminate each line by pressing [ENTER]. Correct a typing error by
using the backspace («) key, or delete the entire line by pressing X
while pressing [CLEAR].

1-1

Interactive Debugger Introduction ! 1

Each command starts with a single character, which you can follow
with text or one or two arithmetic expressions, depending on the
command. You can use upper- or lowercase letters or a mixture.
When you use the spacebar to insert a space before a specific
expression, the screen shows the results in hexadecimal and decimal
notation. For example, in the calculator mode, to obtain the
hexadecimal and decimal notation for the hexadecimal expression
A+2, type:

[SPACEBAR][A][+][2]

Debug displays:

DB: A+2
$000C #00012

1-2

Chapter 2

Expressions

Debug's integral expression interpreter lets you type simple or
complex expressions wherever a command calls for an input value.
Debug expressions are similar to those used with high-level languages
such as BASIC, except that some extra operators and operands are
unique to Debug.

Numbers in expressions are 16-bit unsigned integers--the 6809's
native arithmetic representation. The allowable range of numbers is 0
to 65535. Debug performs two's complement addition and subtraction
correctly, but displays all results as positive numbers in decimal form.

Some commands require byte values. The screen shows an error
message if the result of an expression is too large to be stored in a
byte; that is, if the result is greater than 255. Some operands, such as
individual memory locations and some registers, are only one byte
long, and Debug automatically converts them to 16-bit words without
sign extension.

Spaces, other than a space at the beginning of a command, do not
affect evaluation of the expression. Use them as necessary between
operators and operands to improve readability.

Constants

Constants can be in base 2 (binary), base 10 (decimal), or base 16
(hexadecimal). Binary constants require the prefix %. Decimal
constants require the prefix #. Debug assumes all other numbers to be
hexadecimal. They can have the optional prefix $. The following table
shows examples of each type of constant:

2-1

Interactive Debugger Expressions / 2

Decimal Hexadecimal Binary

#100 64 %1100100

#255 FF %11111111

#6000 1770 %1011101110000
#65535 FFFF %1111111111111111

You can use character constants. Use a single quotation mark (') for 1-
character constants and a double quotation mark (") for 2-character
constants. Quotation marks produce the numerical value of the ASCII
codes for the character(s) that follow. For example:

‘A = $0041
‘0 = $0030
"AB = $4142
"99 = $3939

Special Names

Dot (.) refers to Debug's current working address in memory. You can
examine it, change it, update it, use it in expressions, and recall it. Dot
eliminates a tremendous amount of memory address typing.

Dot-Dot (..) is the value of Dot before the last time it was changed. Use
Dot-Dot to restore Dot from an incorrect value, or use it as a second
memory address.

2-2

Interactive Debugger Expressions | 2

Register Names

Specify the MPU registers with a colon (:) followed by the mnemonic
name of the register, as follows:

= Accumulator A

= Accumulator B

= Accumulator D

= X Register

= Y Register

= U Register

= Direct Page Register

= Stack Pointer

= Program Counter

:CC = Condition Codes Register

g%%d%XUW>
|

The values returned are the test program's registers, which are stacked
when Debug is active. Debug increases 1-byte registers to a word
when used in expressions,

Note: When a break point interrupts a program, the SP
register points at the bottom of the MPU register stack.

Operators

Operators specify arithmetic or logical operations to be performed
within an expression. Debug executes operators in the following
order:

- (negative numbers)

& and ! (logical AND and OR)
* and / {multiplication and division)
+ and - (addition and subtraction)

Operators that are in a single expression and that have equal
precedence (for example, + and -) are evaluated left to right. You can
use parentheses, however, to override precedence.

2-3

Interactive Debugger Expressions | 2

Forming Expressions

An expression is composed of any combination of constants, register
names, special names, and operators. The following are valid
expressions:

#1024+#128
X-:1Y-2

.4+20

yH(: X+:A)
:U & FFFE

Indirect Addressing

Indirect addressing returns the data at the memory address, using a
value (expression, constant, special name, and so on) as the memory
address. The two Debug indirect addressing modes are:

<expression> returns the value of a memory byte using
expression as an address

[expression] returns the value of a 16-bit word using
expression as an address.

For example:

<200> returns the value of the byte at Address 200

[:X] returns the value of the word pointed to by
Register X

[.+10] returns the word value at Address Dot plus 10

Chapter 3

Debug Commands

This chapter describes Debug's available commands. Following the
description for each command, there is an example. The left side of
the example shows what you type, and the right side shows what the
screen displays. Be sure to execute these examples in the order they
appear so you obtain the screen display shown. Many of the examples'
results depend on examples previously executed. Also, remember to
press [ENTER] after each command.

Calculator Commands

The [SPACEBAR] expression command evaluates the specified
expression and displays the result in both hexadecimal and decimal.
For example:

You Type: The Screen Shows:
[SPACEBAR]5000+200[ENTER] $5200 #20992
[SPACEBAR]8800/2[ENTER] $4400 #17408
[SPACEBAR]#100+#12[ENTER] $0070 #00112

You can also use this command to convert values from one
representation to another. For example:

You Type: The Screen Shows:
[SPACEBAR]%11110000[ENTER] $00FO0 #00240
[SPACEBAR]'A[ENTER] $0041 #00065
[SPACEBAR]#100[ENTER] $0064 #00100
[SPACEBAR].[ENTER] $0000 #00000

3-1

Interactive Debugger Debug Commands ! 3

The examples show: (1) a conversion from binary to both hexadecimal
and decimal, (2) a character constant conversion to hexadecimal and
decimal ASCII, and (3) a decimal to hexadecimal conversion. The last
example used indirect addressing to examine memory without
changing Dot's value.

In addition, you can use indirect addressing to simulate 6809 indexed
or indexed indirect instructions. The following example is the same as
the assembly-language syntax [D,Y}:

You Type: The Screen Shows:
[SPACEBAR][:D+:Y][ENTER] $0110 *00272
Dot and Memory

Examine/Change Commands

You can display the current value of Dot (the current memory
address), using the DOT command. For example:

You Type: The Screen Shows:

2201 BO

This shows that the present value of Dot is 2201, That memory address
contains the value BO.

Incrementing Dot

You can use [ENTER] to increment the value of Dot and display its new
value and contents:

You Type: The Screen Shows:

[ENTER] 2202 05
[ENTER] 2203 C2
[ENTER] 2204 82

3-2

Interactive Debugger Debug Commands | 3

Decrementing Dot

Use the minus (-) key to decrement the value of Dot. As when you use
the [ENTER] key, Debug displays both the new value and the contents
of that address:

You Type: The Screen Shows:

[ENTER] 2204 82

-[ENTER] 2203 C2

-[ENTER] 2202 05
Changing Dot

You can enter an expression after the DOT command to change the
value of Dot:

Debug evaluates the expression, and sets Dot to that value. For
example:

You Type: The Screen Shows:

. 500[ENTER] 0500 12
Debug displays the new value of Dot and its contents.

The DOT-DOT command (..) command restores Dot to its previous
value:

You Type: The Screen Shows:
ENTER] 0500 12
. 2000[ENTER] 2000 9C
.[ENTER] 0500 12

3-3

Interactive Debugger Debug Commands | 3

Changing Dot's Contents

You can change the contents of Dot with the EQUAL (=) command:

= expression

Debug evaluates expression, and stores the result at Dot. Debug then
increments Dot and displays the next address and its contents.

The EQUAL command also checks Dot, after the new value is stored,
to see that it changed to the correct value. If it did not, the screen
shows an error message. This happens when you attempt to alter non-
RAM memory. In particular, the registers of many 6800-family
interface devices (such as PIAs and ACIAs) do not read the same as
when written to.

For example:

You Type: The Screen Shows:
ENTER] 2203 C2
=FF[ENTERY] 2204 01
-[ENTER] 2203 FF

Note: The EQUAL command can change any memory
location. Be careful when changing addresses so that you do
not accidentally alter the Debug program, the program being
tested, or OS-9.

3-4

Interactive Debugger Debug Commands | 3

Register Examine/Change Command

You can use any of several forms of the colon (:) REGISTER
command to examine one or all registers or to change a specific
register's contents.

The registers affected by these commands are actually images of the
register values of the program under test. These values are stored on a
stack when the program is not running. Although a dummy stack is
established automatically when you start Debug, use the E command
to give the register images valid data before using the G command to
run the program. The registers are valid after breakpoints are
encountered and are passed back to the program upon the next G
command. (See the "Program Setup" and "GOTO Command" sections
later in this chapter for information on the E and G commands.)

Note: If you change the SP register, you move your stack and
change register contents. In addition, Bit 7 of Register CC
(the E flag) must always be set for the G command to work. If
it is not set, Debug does not return to the program correctly.

This form of the REGISTER command displays the contents of a
specific register:

: register

Omitting register causes Debug to displays all register contents:

You Type: The Screen Shows:
:PC[ENTER] C499
:B[ENTER] 007E
:SP[ENTER] 42FD
:[ENTER] PC=B265 A=01 B=0B CC=80
DP=0C
SP=0CF4 X=FFOD Y=000B
U=00AE

3-5

Interactive Debugger Debug Commands | 3

Use the following form of the REGISTER command to assign a new
value to a register:

:register expression

Debug evaluates the expression, and stores the result in the specified
register. If you specify 8-bit registers, the expression value must fit in
one byte. Otherwise, Debug displays an error message and does not
change the value of the register. Here is an example of this command:

You Type: The Screen Shows:

:X #4096 :X #4096

Breakpoint Commands

The breakpoint capabilities of Debug let you specify addresses at
which you want to suspend execution of the program under test and
reenter Debug. When you encounter a breakpoint, the screen shows
the values of the MPU registers and the DB: prompt. After the program
reaches a breakpoint, you can examine or change registers, alter
memory, and resume program execution. You can insert breakpoints
at as many as 12 addresses.

The inserted breakpoints use the 6809 SWI instruction, which
interrupts the program and saves its complete state on the stack.
Debug automatically inserts and removes SWI instructions at the right
times; so you do not see them in memory.

3-6

Interactive Debugger Debug Commands / 3

Because SWIs operate by temporarily replacing an instruction OP
code, there are three restrictions on their use:

® You cannot use breakpoints in programs in ROM.

® You must position breakpoints at the first byte (OP code) of the
instruction.

® You cannot use the SWI instruction in user programs for other
purposes. (You can use SWI2 and SWI3.)

When you encounter the breakpoint during execution of the program
under test, reenter Debug by typing : register [ENTER], where register
is a mnemonic as discussed in Chapter 2. The screen shows the
program's register contents.

Setting Breakpoints
Use the BREAKPOINT (B) command to insert breakpoints:
B expression
Debug evaluates the expression, and sets the breakpoint at that ad-
dress. If you omit expression, Debug displays all present breakpoint

addresses. Note in the following examples that the B . command sets a
breakpoint at the address of Dot.

You Type: The Screen Shows:
B 1CO0[ENTER] B 1C00

B 4FD3[ENTER] B 4FD3

.[ENTER] 1277 39

B .[ENTER] B.

B[ENTER] 1C00 4FD3 1277

3-7

Interactive Debugger Debug Commands | 3

Removing Breakpoints
Use the KILL (K) command to remove breakpoints:
K expression
Debug evaluates expression for the address at which to remove the

breakpoint. Omitting expression causes Debug to remove all break-
points. For example:

You Type: The Screen Shows:
B[ENTER] 1C00 4FD3 1277

K 4FD3[ENTER]

B[ENTER] 1C00 1277
K[ENTER]

B[ENTER]

Program Setup and Run Commands

The ESTABLISH (E) command prepares Debug for testing a specific
program module:

E module-name

This command's function is similar to that of the OS-9 Shell in starting
a program. The E command does not, however, redirect I/O or override
(#) memory size. The E command sets up a stack, parameters, regis-
ters, and data memory area in preparation for executing the program
to be tested. The G command starts the program.

Note: The E command allocates program and data area
memory as appropriate. The new program uses Debug's
current standard I/O paths, but can open other paths as
necessary. In effect, Debug and the program become co-
routines.

3-8

Interactive Debugger Debug Commands | 3

The E command is acknowledged by a register dump showing the
program’s initial register values. The G command begins program
execution. The E command sets up the MPU registers as if you had
just performed an FSCHAIN service request as shown in the following
table:

DP,U low
direct page

data area

parameter area .
XS high

D = parameter area size
PC = module entry point absolute address
CC= (F=0), (=0) interrupts disabled

For example:

You Type: The Screen Shows:
E myprog SP CC A B DP
X Y PC

OCF3 C8 00 01 0C
OCFF 0DO00 9214

GOTO Command

To start (or resume) program execution, use the G command. The G
command goes to (resumes) program execution after a breakpoint. If a
breakpoint exists at the present program counter address, Debug does
not insert that breakpoint. If you wish to suspend execution during
each pass in a loop, you must insert two breakpoints in that loop.

Interactive Debugger Debug Commands | 3

Note: Usually you use the E command before the first G
command to set up the program to be tested. Debug initially
sets up a default stack, so you can use G expression to start a
program, using the results of the expression as a starting
address.

Examples:

DB: G 4CO0[ENTER]
DB: G :PC+100[ENTER]
DB: G [.JIENTER]
LINK Command
The LINK (L) command sets a link to the specified module:

L module-name

If successful, LINK sets Dot to the address of the first byte of the
program and displays it.

You can use L to find the starting address of an OS-9 memory module.
For example:

You Type: The Screen Shows:

L FPMATH [ENTER] €00087

You can also use the LINK command to reset Dot to the first byte of a
module:

You Type: The Screen Shows:

L FPMATH [ENTER] C000 87
. .+A10 [ENTER] CA10 FF
L FPMATH [ENTER] C000 87

3-10

Interactive Debugger Debug Commands | 3

Utility Commands

Clearing Memory

The CLEAR MEMORY (C) command performs a walking bir memory
test and clears all memory between the two evaluated expressions:

C expression1 expression2

Expressionl specifies the starting address and expression2 specifies
the ending address, which must be higher. If any byte fails the test, the
C command displays its address. You can test and clear random access
memory only.

Note: Use this command carefully. Be sure of the memory
address you are clearing.

Some examples of this command are:

You Type: The Screen Shows:

C . .+FF[ENTER]

C 15FF 2000[ENTER] 17E4
17E7

The first example clears all memory between the last value of Dot and
Dot plus FF. Because Debug displayed a blank line (nothing), all
memory tested good.

The second example indicates that there is bad memory at addresses
17E4 and 17E7.

3-11

Interactive Debugger Debug Commands | 3

Displaying Memory

The MEMORY command produces a screen-sized tabular display of
the contents of memory in both hexadecimal and ASCII form:

M expression1 expression2

Expressionl specifies the starting address. Expression2 specifies the
ending address, which must be higher.

Each line's starting address displays on the left, followed by the
contents of the subsequent memory locations. On the far right, Debug
displays the ASCII representation of the same memory locations.

Debug substitutes periods (.) for nondisplayable characters.

Searching Memory

The SEARCH command searches an area of memory for a 1- or 2-byte
pattern, beginning at Dot.

S expression1 expression2

Expressionl specifies the ending address. Expression2 is the data for
which to search. If expression2 is less than 256, Debug uses a 1-byte
comparison, If it is greater than 256, Debug uses a 2-byte comparison.

If Debug finds a match, it sets Dot to the address at which the match
occurred. If Debug does not find a match, it displays the DB: prompt.

Shell Command
To call the OS-9 shell from within Debug, use the $ command:
$ shell-command
This command executes the specified shell-command and returns to

Debug. If you omit the shell-command, Debug calls the OS-9 Shell,
which responds with prompts for one or more command lines.

3-12

Interactive Debugger Debug Commands | 3

You can also use the $ command to call the system utility programs
and the assembler from within Debug. For example:

$DIR[ENTER]

displays the current directory.

Quitting Debug
The QUIT command lets you exit Debug and return to the OS-9 Shell.
To exit Debug, type:

Q [ENTER]
The system returns you to OS-9.

Note: Any modules you load using $load module-name,or
any modules you link using L module-name, remain linked in
memory. See the UNLINK command in the OS-9 Level Two
Operating System manual for information about unlinking
modules from memory.

3-13

Chapter 4

Using Debug

You use Debug primarily to test system memory and I/O devices, to
patch the operating system or other programs, and to test hand-
written or compiler-generated programs.

Sample Program

The simple assembly-language program shown here illustrates the use
of Debug commands. This program prints HELLO WORLD and then
waits for a line of input.

NAM EXAMPLE

* Useful Numbers

PRGRM equ $10

OBJCT equ $01

STK equ 200

* Data Section

csect

LINLEN RMB 2 LINE LENGTH
INPBUF RMB 80 LINE INPUT BUFFER
endsect

4-1

Interactive Debugger Using Debug 14

* Program Section
psect example,PRGRM+0OBJCT,$81,0,STK,ENTRY

ENTRY EQU * MODULE ENTRY POINT

LEAX OUTSTR,PCR OUTPUT STRING ADDRESS
LDY #STRLEN GET STRING LENGTH

LDA #1 STANDARD OUTPUT PATH

os9 I$WritLn WRITE THE LINE

BCS ERROR BRA IF ANY ERRORS

LEAX INPBUF,U ADDRESS OF INPUT BUFFER
LDY #80 MAX OF 80 CHARACTERS

LDA #0 STANDARD INPUT PATH

0s9 ISReadLn READ THE LINE

BCS ERROR BRA IF ANY I/O ERRORS

STY LINLEN SAVE THE LINE LENGTH

LDB #0 RETURN WITH NO ERRORS

ERROR os9 F$Exit TERMINATE THE PROCESS

OUTSTR FCC /HELLO WORLD/ OUTPUT STRING
FCB $0D END OF LINE CHARACTER
STRLEN EQU *-OUTSTR STRING LENGTH

endsect End of PSect

Following is the listing (RMA output) for the Example program:

Microware OS-9 RMA - V1.1 87/03/16 17:33 example.a Page 1
EXAMPLE -

00001 NAM EXAMPLE

00002

00003 * Useful Numbers

00004 0010 PRGRM equ $10

00005 0001 OBJCT equ $01

00006 00c8 STK equ 200

00007

00008 * Data Section

00009 0000 csect

00010 0000 LINLEN RMB 2 line length

00011 0002 INPBUF RMB 80 line input buffer
00012 0052 endsect

00013

00014 * Program Section

00015 psect example, PRGRM+OBJCT,$81,0,STK,ENTRY
00016

4-2

Interactive Debugger Using Debug / 4

00017 0000 ENTRY EQU * module entry point
00018 0000 308d0020 LEAX QUTSTR,PCR output string address
00019 0004 108e000c LDY #STRLEN get string length
00020 0008 8601 LDA #1 standard output path
00021 000a=103f00 0s9 I$WritLn write the line

00022 000d 2512 BCS ERROR BRA if any errors
00023 000f 3042 LEAX INPBUF,U address of input buffer
00024 0011 108e0050 LDY #80 max of 80 characters
00025 0015 8600 LDA #0 standard input path
00026 0017=103f00 0s9 I$ReadlLn read the line

00027 001a 2505 BCS ERROR BRA if any 1/O errors
00028 001c 109100 STY LINLEN save the line length
00029 001f ¢c600 LDB #0 return with no errors
00030 0021=103f00 ERROR 0s9 F$Exit terminate the process
00031

00032 0024 48454c4c OUTSTR FCC /HELLO WORLD/ QUTPUT STRING
00033 002f 0d FCB $0D end-of-line character
00034 000c STRLEN EQU *-OUTSTR string fength

00035

00036 0030 endsect End of PSect

Following is the linkage map (Rlink output) for the Example program:

Linkage map for example File - /h0/CMDS/color/example

Section Code IDat UDat IDpD UDpD File
example 00150000 0000 00 00 RELS/example.r
dpsiz udpd 0000
end udat 0000
edata idat 0000
btext code 0000
etext code 0045

os9defs_a 00450000 0000 00 00 ../LIB/sys.I
I$SReadLn cnst 008b
ISWritLn cnst 008c
F$Exit cnst 0006

00300000 0000 00 00

4-3

Interactive Debugger Using Debug | 4

Note: This Psect Example has a value of $15, which is the
offset from the beginning of the final module.

Following is the display created by using OS-9's DUMP command on
the Example module:

0S89:dump /d0/cmds/example
Addr 0 12 34 56 78 9A BCDETF 02468ACE

0000 87CD 0058 000D 11C1 3000 1500 C865 7861 .M.X...AO...Hexa
0010 6D70 6CE5 0030 8D0O0 2010 8EO0 0C86 0110 mple.0..
0020 3F8C 2512 3042 108E 0050 8600 103F 8B25 ?.%.0B...P...?.%
0030 0510 9F00 C600 103F 0648 454C 4CA4F 2057 ...F..?.HELLOW
0040 4F52 4C44 0DOO 0000 0000 0000 0065 7861 ORLD......... exa
0050 6D70 6C65 0091 A4B8 mple..$8

Using Debug

Following is a sample session using the OS-9 Interactive Debugger:

First, run Debug by typing:
debug [ENTER]

The screen displays the Debug prompt DB:. To load the Example
program module, type:

$load example [ENTER]

The dollar sign ($) tells Debug that you want to use an OS-9 system
command and LOAD reads the example module from the current
directory to your computer's memory.

You now need to tell Debug what module you want to use. Do so with
the L (LINK) command. Type:

| example [ENTER]

4-4

Interactive Debugger Using Debug /| 4

Debug links to Example and displays the module's address:
C000 87

Redisplay the current address and its value using the DOT command.
Type:

. [ENTER]

The screen shows:

C000 87

To display the contents of the entire module, use the M (display
memory) command. Type:

m . .+57 [ENTER]

The screen displays:

C000 87CD 0058 000D 11C1 3000 1500 C865 7861 ...X....0...exa
C010 6D70 6CE5 0030 8DO0O0 2010 8EO0 0C86 0110 mpl..0..
C020 3F8C 2512 3042 108E 0050 8600 103F 8B25 ?.%.0B...P..7.%
C030 0510 9F00 C600 103F 0648 454C 4CA4F 2057 ?2.HELLO W
C040 4F52 4C44 0D0O0 0000 0000 0000 0065 7861 ORLD......... exa
C050 6D70 6C65 0091 A4B8 0000 FFFF 0000 0276 mple........... v

Note: Psect of example program starts at an offset of $15
from the beginning linked module.

Prepare to run the Example program by typing:
e example [ENTER]

The screen displays the program’s initial register values:

SP cC A B DP X Y U PC
2F3 A8 00 01 02 02FF 0300 0200 CO15

To set a breakpoint at BCS ERROR, type:
b .+2f [ENTER]

Interactive Debugger Using Debug | 4

Then, display the breakpoint by typing:
b [ENTER]

The screen displays:

CO2F

To run the program, type:
g [ENTER]

The module displays HELLO WORLD. To complete the program, type a
message and press [ENTER], such as:

hello computer

Debug now encounters the breakpoint and displays the current
register values:

BKPT:
SP CC A B DP X Y Uu PC
02F3 A0 00 Ot 02 0202 000F 0200 CO2F
You can display the module's data area by typing:

m :u :u+20 [ENTER]

The screen displays:

0200 D109 6865 6C6C 6F20 636F 6D70 7574 6572 ..hello computer
0210 0D86 AG6A4 847F 8D06 A6A0 2AF6 8620 3410 *.. 4.
0220 9EO01 A780 9F01 3590 3432 860D 8DFO 304D 5.42....0M

Display the relative data area at offset 2 by typing:
:u+2 [ENTER]

Interactive Debugger Using Debug | 4

To step through the data area, press the [ENTER] one or more times.
The screen displays the addresses and address values, such as:

0202 68
0203 65
0204 6C
0205 6C
0206 6F

To end the Debug session, type:

q [ENTER]

The 0S9: prompt reappears on the screen.

Patching Programs

To patch a program (to change its object code), follow these steps:
1. Load the program into memory, using OS-9's LOAD command.

2. Use Debug's LINK, DOT, and EQUAL commands to link to and
change the program in memory.

3. Save the new, patched version of the program on a disk file, using
0S-9's SAVE command.

4. Update the program module's CRC check value, using OS-9's
VERIFY command. Be sure to use the U option.

5. Set the module's execute status, using OS-9's ATTR command.

Step 4 is essential because OS-9 cannot load the patched program into
memory until the program's CRC check value is updated and correct.

4-7

Interactive Debugger

Using Debug | 4

The example that follows shows how the sample program is patched.
In this case, the Idy #80 instruction is changed to Idy #32.

0S9: debug

Interactive Debugger
DB: $load example
DB: | example

2000 87
DB:. .+29

2029 50
DB: =#32

202A 86
DB: -

2029 20
DB: q
0S9: save temp example
0S9: verify U temp newex
0S9: attr newex e pe
0S9: del temp

call Debug

call 0S-9 to load the program
set dot to beg addr of program
actual address will vary

add offset of byte to change
current value is 00

change to decimal 32

next byte displayed

back up 1 byte

(change confirmed)

exit Debug

save in file called "temp”
update CRC and copy to "newex”
set execution status

delete temporary file

Patching OS-9 Component Modules

Patching modules that are part of OS-9 (are contained in the OS-9
Boot file) is different than patching a regular program because you
must use the COBBLER and OS9GEN programs to create a new OS-9
Boot file. This example shows how an OS-9 device descriptor module
is permanently patched, in this case to change the uppercase lock of
the device /TERM from on to off. This example assumes that a blank,
freshly formatted diskette is in Drive 1 (/D1).

Note: Always use a copy of your OS-9 System Disk when
patching, in case something goes wrong.

4-8

Interactive Debugger Using Debug / 4

0S9: debug call Debug

Interactive Debugger

DB: | term set dot to addr of TERM module
CA82 87 actual address will vary

DB:..+13 add offset of byte to change
CA95 01 current value os 01

DB: =0 change value to 00 for "OFF"
CA96 01

DB: - move back one byte
CA95 00 change confirmed

DB: q exit Debug

0S9: COBBLER /D1 write new bootfile on ID1

0S9: VERIFY «/D1/0S9BOOT >/DO/TEMP U update CRC value
0S9: DEL /D1/0S9BOOT delete old boot file
0S9: COPY /DO/TEMP /D1/0S9BOOT install updated boot file

You can now use the DSAVE command to build a new system disk.

4-9

Chapter 5

Debug Command Summary
and Error Codes

Debug Command Summary

[SPACEBAR]expression

Dot Commands

. expression

= expression

[ENTER]

Evaluate; display in hexadecimal and
decimal form

Display Dot address and contents

Restore last Dot address; display address
and contents

Set Dot to result of expression; display
address and contents

Set memory at Dot to result of
expression

Decrement Dot; display address and
contents

Increment Dot; display address and
contents

5-1

Interactive Debugger Command Summary and Error Codes | 5

Register Commands

Display all registers' contents
register Display the specified register's contents

:register expression Set register to the result of expression

Program Setup and Run Commands

E module-name Prepare for execution
G Go to the program
G expression Goto the program at the address

specified by the result of expression

L module-name Link to the module named; display
address

Breakpoint Commands

B Display all breakpoints

B expression Set a breakpoint at the result of
expression

K Kill all breakpoints

K expression Kill the breakpoint at address specified

by expression

5-2

Interactive Debugger Command Summary and Error Codes | 5

Utility Commands

M expressionl expression2 Display memory dump in tabular
form

C expressionl expression2 Clear and test memory

S expressionl expression2 Search memory for pattern

$ text Call OS-9 Shell

Q Quit (exit) Debug

Debug Error Codes

Debug detects several types of errors, and displays a corresponding
error message and code number in decimal notation. The various
codes and descriptions are listed here. Error codes other than those
listed are standard OS-9 error codes returned by various system calls.

0 Illegal Constant: The expression includes a constant that has an
illegal character or that is greater than 65,535.

1 Divide by Zero: You are trying to use a divisor of zero.

2 Multiplication Overflow: The product of the multiplication is
greater than 65,535,

3 Operand Missing: An operator is not followed by a legal
operand.

4 Right Parenthesis Missing: Parentheses are not correctly nested.

5 Right Bracket Missing: Brackets are not correctly nested.

5-3

Interactive Debugger Command Summary and Error Codes | 5

6

10

11

12

13

Right Angle Bracket Missing: A byte-indirect is not properly
nested.

Incorrect Register: A misspelled, missing, or illegal register
name follows the colon.

Byte Overflow: You are trying to store a value greater than 255
in a byte-sized destination.

Command Error: A command is misspelled, missing, or illegal.

No Change: The memory location does not match the value
assigned to it.

Breakpoint Table Full: Twelve breakpoints already exist.

Breakpoint Not Found: No breakpoint exists at the address
given.

Illegal SWI: Debug encountered an SWI instruction in the user
program at an address other than a breakpoint.

Interactive Debugger

Index

! operator 2-3

" (quotation marks) 2-2

prefix 2-1-2-2

$ (SHELL) command 3-12 -3-13
$ prefix 2-1-2-2

% prefix 2-1-2-2

& operator 2-3

. (DOT) command 2-2, 3-2 - 3-4, 4-5
.. (Dot-Dot) command 2-2, 2-3

* operator 2-3

+ operator 2-3

- operator 2-3

/ operator 2-3

:(REGISTER) command 3-5 - 3-6
: (register names) 2-3

accumulator 2-3

addition 2-3

addresses, specifying 3-6 - 3-8
addressing, indirect 2-4
ASCII codes 2-2

ASCII conversion 3-2

B (BREAKPOINT) command 3-7, 4-5 - 4-6
binary conversion 3-2
breakpoints 3-6 - 3-8

C (CLEAR MEMORY) command 3-11
changing register contents 3-5 - 3-6
character constants 2-2

clearing memory 3-11

Interactive Debugger Index

COBBLER 4-8 -4-9
codes, ASCII 2-2
colon (REGISTER) command 3-5 - 3-6
command line 1-2
commands
$ (SHELL) 3-12-3-13
B (BREAKPOINT) 3-7,4-5-4-6
C (CLEAR MEMORY) 3-11
DOT 2-2-2-3,4-5
DOT-DOT 2-2, 3-3
E (ESTABLISH) 3-5, 3-8-3-10, 4-5
G (GOTO) 3-5,3-9-3-10
K (KILL) 3-8
L (LINK) 3-10, 4-4 - 4-5
M (MEMORY) 4-5-4-6
0S-9 3-12-3-13
REGISTER 3-5-3-6
S (SEARCH) 3-12
content of registers 3-5
converting values 3-1
current working address 2-2

Debug prompt 1-1
decimal

conversion 3-2

notation 1-2
deleting a line 1-1
diagnosing programs 1-1
displaying memory 3-12
division 2-3
Dot 2-2
Dot-Dot 2-2
DSAVE 4-9
E (ESTABLISH) command 3-5, 3-8, 3-10, 4-5
ending a debug session 3-13
examining registers 3-5 - 3-6

Interactive Debugger Index

execution
of programs 3-9 - 3-10
testing 3-8 - 3-9

exiting a debug session 3-13

expressions 2-3, 3-1
displaying 1-2

G (GOTO) command 3-5, 3-9 - 3-10

hexadecimal
conversion 3-2
notation 1-2
indirect addressing 2-4
inserting breakpoints 3-6 - 3-7
integers 2-1
integral expression interpreter - 2-1

K (KILL) command 3-8

L (LINK) command 3-10,4-4 - 4-5
line deleting 1-1

loading a program module 4-4
logical operators 2-3

M (MEMORY) command 4-5 - 4-6
memory

clearing 3-11

displaying 3-12

searching 3-12

testing 3-11
modes, indirect addressing 2-4
modules

linking 3-10, 4-4 - 4-5

loading 4-4

patching 4-8 - 4-9
multiplication 2-3

Interactive Debugger Index

negative arithmetic 2-1
negative numbers 2-3
notation (hexadecimal and decimal) 1-2

operands 2-1
operators 2-3
0S-9 Shell 3-12 -3-13
OS9GEN 4-8

programs
executing 3-9 - 3-10
loading modules 4-4
patching 4-7 - 4-9

quitting debug 3-13
quotation marks 2-2

REGISTER command 3-5 - 3-6
registers 2-3

examining 3-5 - 3-6
resuming execution 3-9 - 3-10

S (SEARCH) command 3-12
sample session 4-4 - 4-9
searching memory 3-12
shell command 3-12 - 3-13
software interrupts 3-6 - 3-7
SP register 3-5
spaces 2-1
starting program execution 3-9 - 3-10
starting

address 3-10

Debug 1-1
subtraction 2-3
suspending execution 3-6 - 3-8

Interactive Debugger Index

test
execution 3-8 - 3-9
memory 3-11

two's complement 2-1

value, assigning to a register 3-6
values, converting 3-1

working address 2-2

Screen Editor

Contents

Chapter 1/ Introductioncoooeevieiieenenerececeeeese e 1-1
Modes Of OPETAtioNoovvveiervecieiiiierieeieiesteiesinesseriesesereeeseene 1-1
Starting SCIEAcocveevieiierierceteeeei et 1-2
AVAILable OPHONSoceeovrerriieeiieeeeierietiete et enses s esessesbereeaneves 1-2

Chapter 2/ The Termset Filecccouvmivnnivnrieie s 2-1
Modifying the Termset Filecooccevveoinecniiniececececre e 2-1

The Termset File FOrmatococovveveerrcereienniecenesierennnenens 2-2
Termset FIeldsoccvvvmiienrieneeeiennieesieeeeeniesseser et sassenns 2-2

Chapter 3/ Command Modeccccoeeerrerinrienennreennesssrenenenenens 3-1
Changing to the Edit MOdEccocecevevirneesreienrieiiecnrenerernnscenes 31
Changing to the Insert Modecccovicreiceeariniieciieseence e 32
Manipulating the Edit Bufferc..ccocoevnnenniiccninens 3-3

SaAVING TEXL .ovcvvieriiinierreirere ettt e s s e nan v sasen 33
RemOVING TEXL ..vvverreeiirieieniceicriee et ereveeree e e aennas 3-4
Searching for Stringsc.ccccvveiieriieceereee e ercreesenas 3-5
Changing Stringsc.c.ccovveverveerennrierereeririerirrenresseeseersnsesens 3-5
USIng Wild Cardscooeveecvnerminrenniriniresseennnnrsesessssssenssssene 3-6
Miscellaneous Commandsc.c.coeeveerveereevenncererrerseerarnennenns 3-6
EXiIting SCTedcccovovevivrreerireeircnrienrereriseneerieereserseesosesseseves 3-8

Chapter 4 / Edit Modeccoovoieeeeiicnrerneeeesiennsre e ovesetsassssesenes 4-1
Getting HEIPovveveereiiiiiiriieniercnennsiernietescscnsersresesseesescsssasseseseone 4-1
Controlling the CUTISOTccveeerreerrrrerieeriereereeerneeesereeeeesereeseneene 4-2
Scrolling the SCIEeno.cvvirievecrieririricreereccreee et 4-2
Moving to a Specific Lineccevivevereeriveicinnniecriscinenenccenans 4-3
FInding a SN ...coooviviiieeiieeceecetetee et et enns 4-3
Replacing StrANESccccceveereeerreiereerenienireenesenvesseseereesesrcssereeseeceseones 4-4
DELeting TEXL ..vvvveeevevemrienrmenerenceseenesteserecsiessssssesasaereaesssssessacssesenes 4-4
Inserting or Replacing a Single Charactercccocovivvniininnn, 4-5

Cutting and Pastingc.ccccecevoiveivnenceininniiceerse s 4-5

Screen Editor Contents

Editing LINESc.cocccveviemirrecinenrenniarneessesesseneesisreressesesensessasaseosesasses 4-6
Displaying the Status Lingcccccvvereereninnrivecennniennnerescresnens 4-7
Chapter 5/Insert MOdeccooveeeeniecreecrererenseeeceereassensescseneenens 5-1
Chapter 6 / Quick Referencecccocovevceccvevevercsinencenscenensecns 6-1
Command MOGEc.cccvrreerenurneirieereeesssenrascsesresssessssasenssassoses 6-1
Edit MOGEovrreirereeecrrcisiseeeneeeete e e svonese st eaesssasassaesesennes 6-3
Cursor Movement Commandsccoceeeeeereererreerenseneecensennes 6-3

Cut and Paste Commandsccovvevurmemrrnrereererurierenraseesennnns 6-5

INSEIt MOGE ...t crcretecrrerr et see e s eres s e snessessaennaos 6-6

Chapter 1

Introduction

The OS-9 Level Two Screen Editor (Scred) is a powerful and simple to
learn screen-oriented text editor. You can use Scred to prepare text
for letters and documents or text to be used by other OS-9 programs
such as the assembler and high level languages. Scred's features
include:

e Adjustable screen and workspace size

e Continuously updated screen

e Cursor positioning by characters, words, and line-by-line
e Scrolling

e Cut and paste

e Change, find, and search strings

e Wild cards

Modes of Operation

Scred has three modes of operation: Command, Edit, and Insert. The
Command Mode lets you execute Scred commands that affect files or
the edit buffer. Scred starts up in Command Mode. The Edit Mode
lets you modify or manipulate text within the edit buffer. The Insert
Mode lets you enter new text into the edit buffer.

1-1

Screen Editor Introduction /| 1

Starting Scred
To start Scred, type:
scred filename [ENTER]
If the file exists, Scred loads the file into the edit buffer, displays the
beginning of the file, and enters Edit Mode.

If the file does not exist, Scred displays:

can't open filename
ERROR #216

and enters the Command Mode.

If you want to create a new file, type:
scred [ENTER]
This starts Scred in Command Mode, from which you can load

a file or begin creating a new one by using the NEW command (see
Chapter 3).

Note: Scred uses a special file called termset to describe the
attributes of a particular terminal. See Chapter 2, "The
Termset File," for more information on this file.

Available Options

You can use several options on the command line when starting up
Scred. These options specify the terminal type, buffer size, and so on.
Use the following form when starting Scred with options:

scred filename options [ENTER]

1-2

Screen Editor Introduction/ 1

The available options are:

-?

-b= numk

-l=num

-t=term

-W=num

-z=path

Displays a list of the Scred options.

Allocates numk bytes of memory for Scred's working
buffer. The buffer's default size is 12 kilobytes. The "="
and "k" are optional parameters. For example, -b32 is the
same as -b=32k.

Configures Scred for terminals that have embedded video
attributes, that is, terminals in which the attribute start
flag uses one character position.

Configures Scred for special graphic-oriented terminals
(terminals that do not support line feeds).

Specifies the number of lines to be displayed on the
terminal screen. You can also set this option in the
termset file. See Chapter 2, "The Termset File," for more
information.

Specifies the terminal type. Use this option if your
terminal type is different from the default terminal type
as set in the rermset file. See Chapter 2, "The Termset
File," for more information.

Specifies the maximum number of characters per line to
be displayed on the terminal screen. You can also set this
option in the termset file. See Chapter 2, "The Termset
File," for more information.

Sets the pathlist that Scred uses to find the termset file.
See Chapter 2, "The Termset File," for more information.

Note: Since Scred normally checks the current window size,
the -1 and -w options are not often needed. If you use them, be
certain you give valid values. Otherwise these options can
interfere with screen formatting.

1-3

Screen Editor Introduction/ 1

Examples
scred file1 -b=32k
This command starts up Scred with a 32k byte buffer.

scred file1 -1=24 -w=30

This command starts up Scred with a screen size of 24 lines by 30
characters.

1-4

Chapter 2

The Termset File

To operate properly, Scred must know the type of terminal you are
using. Scred finds this information in a file named Termset. The
Termset is a text file containing entries that describe a variety of
terminals. The terminal types currently supported in Termset are:

e COCO (the default for windows) e KT7
e VDG (for VDG screen) e ANSI
e ABMSS e ABMSSH

If you using other than the Coco terminal, use the -t option and
specify the terminal name when starting Scred. If your terminal type
is not currently supported in the Termset file, read the rest of this
chapter for instructions to add your terminal to the file.

Scred looks for the Termset file in the directory /dd/sys, where dd is
the default device for your system. If Scred doesn't find the file there,
it looks in /h0/sys and then in /d0/sys. You can use the -z option of
Scred to specify a different path for the Termset file.

Modifying the Termset File
To add a new terminal type to the Termset file, you can:
e Edit the Termset file using a text editor

e Use the Maketerm supplied on the Scred distribution diskette

Because Makefile is easier to use, it is the method shown in this
chapter's examples.

21

Screen Editor The Termset File /2

The Termset File Format

The Termset file contains control code definitions for one or more
types of terminals. Each text line in the file is a complete description
list for a particular kind of terminal.

The first line of the Termset file contains the name and control code
definitions for the default terminal type. This is the terminal type
Scred uses if you do not use the -t option. The form is:

NAME:ccc:cov:dl:dc:cs:cel.il:sav:eav:sl:sw

Each field represents a different control code definition. Notice that
each field is separated by a colon (:). Even if the terminal cannot
perform a certain function, the colon must still be present to hold the
function's position.

Termset Fields

The following list defines each field in a terminal type entry:

NAME Terminal Name
Specifies the identification name of the terminal
described in the line. Use this name with the -t option to
specify the terminal type for Scred to use. You must
specify the name in all uppercase, although you can
specify lowercase with the -t option on Scred's command
line.

ccc Cursor Control Code
Positions the cursor to any location on the screen. This
function is required. There are two parts to the Cursor
Control Code : (1) one or more position cursor command
characters, and (2) cursor coordinates. \X and \Y (or
\X\X and \Y\Y) are cursor coordinates where X and Y
refer to the column number and row number,
respectively. The order in which you specify the cursor
coordinates is dependent on your terminal's requirements.

2-2

Screen Editor The Termset File |2

cov

dl

de

cs

cel

This information should be supplied with the hardware
specifications that come with your terminal.

Examples:

$SIbA\YVVY \X\XH:
$1b$3d\Y\X:
$1bR\X\Y:

In the first example, the bracket character ([) has an
ASCII value of $5B. You could use $5B in place of [to
produce the same results.

Cursor Offset Value

Sets the offset value for the cursor coordinates. This
value, specified in hexadecimal, is always added to the
cursor X and Y coordinates. Many terminals use an
offset of $20.

Delete Line Control Character(s)
Deletes the current line and causes lines below the
deleted line to scroll up.

Delete Character Control Character(s)

Deletes the character under the cursor and shifts the
remaining characters on the line to the left by one
character position.

Clear Screen
Erases the entire screen, and returns the cursor to the
home position.

Clear to End of Line

Erases all characters on the line from the current cursor
position to the end of the line, including the character
under the cursor.

2-3

Screen Editor The Termset File | 2

il

sav

eav

sl

SW

Insert Line
Creates a new blank line by scrolling the current and
subsequent lines down one line.

Start Alternate Video
Displays all subsequent characters in reverse video,
different intensity, or any similar mode that is visibly
different from the normal video mode. This code is used
when highlighting text.

End Alternate Video
Displays all subsequent characters in normal video mode.

You can specify 0-4 output control characters for the
following fields: Delete Line, Delete Character, Clear
Screen, Clear to End of Line, Insert Line, Start Alternate
Video, and End Alternate Video.

Screen Length

Specifies, in hexadecimal, the number of lines to be
displayed on the terminal screen. This field is optional.
If you omit this value, Scred uses 24.

Screen Width

Specifies, in hexadecimal, the number of columns to be
displayed on the terminal screen. This field is optional.
If you omit this value, Scred uses 80.

Screen length and screen width are optional fields. If
you omit them, Scred checks the size of the current
screen (or part of the screen) and uses these values.
For external terminals, Scred assumes a screen size of
24 lines by 80 columns. If you do specify a length
and width, Scred uses these values and does not
check on the size of the current screen.

2-4

Screen Editor The Termset File |2

Examples

Example 1

Create the following Termset entry:

ABMS85:31b$3d\eY\eX:$20:$1bR:$1bW:$1e$1bY:$1bT:$1bE:$1bj:$1bk:$18
:$50:

To create the above entry, type the following at the system prompt ($):

maketerm [ENTER]

The Maketerm utility prompts you to supply a value for each field in
the Termset entry. If a Termset file does not exist, Maketerm creates
it. If the file does exist, Maketerm appends the new entry to the end of
the Termset file.

Note: If a particular terminal does not have one of the
requested features, simply press [ENTER] at the prompt.

Following are the prompts displayed by Maketerm and the responses
needed to create the ABMS8S entry:

terminal name: ABM85 [ENTER]

cursor positioning sequence: $1b$3d\eY\eX [ENTER]
cursor position offset: $20 [ENTER]
delete line sequence: $1bR [ENTER]
delete character sequence: $1bW [ENTER]
clear screen: $1e$1bY [ENTER]

clear to end of line: $1bT [ENTER]

insert line: $1bE [ENTER]

alternate video: $1bj [ENTER]

restore normal video: $1bk [ENTER]
screen length: $18 [ENTER]

screen width: $50 [ENTER]

2-5

Screen Editor The Termset File |2

Example 2
To create the following Termset entry:

TERM:$1bR\X\Y:$00:::$0e:::$1bj:$1bl:::

Type maketerm [ENTER]. The prompts and responses look like this:

terminal name: TERM [ENTER]
cursor positioning sequence: $1bR\X\Y [ENTER]
cursor position offset: $00 [ENTER]
delete line sequence: [ENTER]
delete character sequence: [ENTER]
clear screen: $0e [ENTER]

clear to end of line: [ENTER]

insert line: [ENTER]

alternate video: $1bj [ENTER]
restore normal video: $1bl [ENTER]
screen length: [ENTER]

screen width: [ENTER]

Chapter 3

Command Mode

The Command Mode lets you invoke commands that affect files or
manipulate the entire edit buffer. Scred starts up in Command Mode if
you do not specify a file on the command line. When you are in the
Command Mode, Scred displays the > prompt in the lower left corner
of the display screen.

Command Mode commands (except the GOTO command) are at least
two characters long to distinguish them from the Edit and Insert Mode
commands. You can use either the full name for the command, such as
edit, or Scred's shortened form, ed. Commands that have short forms
are shown as follows:

edfit]

This means you can type either ed or edit for the EDIT command. Do
not type the square brackets.

When entering commands in Command Mode, you can use the
standard OS-9 control keys to backspace, delete lines and characters,
and so on. Press [ENTER] after typing each command.

Changing to the Edit Mode

There are two methods in which you can enter Edit Mode from
Command Mode:

1. Edit an existing file by typing at the > prompt:
ol[d] filename [ENTER]
If Scred can open the file, it then enters the Edit Mode.

31

Screen Editor Command Mode / 3

2. If you have afile open and want to enter the Edit Mode, type:
ed(it] [ENTER]
You can also press [CTRL][E] to enter the Edit Mode.

From the Edit Mode, you can change to the Command Mode by
pressing [CTRL)[BREAK]

Changing to the Insert Mode
You can enter Insert Mode from Command Mode by typing:

in[sert] [ENTER]

Create a new file by typing at the > prompt:

ne[w] filename [ENTER]

If Scred can create the file, it loads the file into the edit buffer and
then enters the Edit Mode.

You can enter the Insert Mode from the Edit Mode by: (1) pressing
[ENTER] to insert text before the cursor position, and (2) pressing the
down arrow to insert a new line before the current line. You can then
begin typing the new line.

Note: You cannot enter the Insert or Edit Modes if no file
exists in the edit buffer.

3-2

Screen Editor Command Mode | 3

Manipulating the Edit Buffer

Scred's edit buffer size is 12k bytes unless you use the -b option to
specify a different value. If your file is larger than the edit buffer,
Scred loads as much of the file as it can, while leaving approximately
2k free for changes and additions. With the 12k buffer size, Scred
loads 10k of the file. The following commands show how to write,
read, and insert files or sections of files.

Saving Text

The WRITE command writes the contents of the edit buffer and the
remainder of the input file (if any) to the output file. WRITE then
closes the file and clears the edit buffer. To write a file, type:

wrlite] [ENTER]

When Scred saves a file, it creates an output file called Ed.tmp.xxx,
where xxx is the process id number. If Scred can successfully create
and write the entire output file, it deletes the current input file and
renames the output file to the old name.

The UPDATE command writes out the changes you made to the edit
buffer and re-enters the Edit Mode. To update a file, type:

upldate] [ENTER]
The ADD command lets you insert a specified file within the text of

the edit buffer. Scred inserts the file directly before the current line.
To add a file before the current line, type:

ad[d] filename [ENTER]
Note: There must be enough free space in the edit buffer for

the extra text. If Scred runs out of space, it terminates with the
message file too large to add and does not load any of the file.

33

Screen Editor Command Mode | 3

The MORE command lets you read in the next section of the input file.
Use this command when the file you are editing is too large to entirely
fit in the edit buffer. The MORE command causes Scred to write the
contents of the edit buffer between the top of the buffer and the
current cursor position to the output file and read the next section of
the input file into the edit buffer. To read the next section of a file,
type

molre] [ENTER]

Removing Text

Scred lets you delete specified lines of text from the edit buffer or
delete the entire buffer.

The DELETE command lets you delete specified lines from the edit
buffer. To delete lines, type:

dellete] start-line end-line [ENTER]
This command deletes text from start-line to end-line, inclusive.

The ABORT command erases the entire contents of the edit buffer and
closes the file. To erase and close a file, type:

ab[ort] [ENTER]

The CLEAR command also erases the entire contents of the edit buffer
but the file remains open. To clear the edit buffer, type:

cl[ear] [ENTER]

34

Screen Editor Command Mode / 3

Searching for Strings

The FIND command prompts you to enter a search mask and then
searches for that string. If Scred finds the string, it positions the cursor
at the beginning of the first occurrence of the string and then enters
Edit Mode. To find a string, type:

filnd] [ENTER]

The SEARCH command prompts you to enter a search mask and then
searches for that string. In addition, SEARCH lets you search for that
string between specified lines instead of through the entire file. If
Scred finds the string, it displays the lines, including the line number,
in which the string was found. To search for a string, type:

se[arch] start-line end-line [ENTER]

This command searches for the string beginning at starz-line through
end-line, inclusive. If you omit start-line and end-line, Scred searches
the entire edit buffer.

Note: The SEARCH and FIND commands accept a match first word
only character. By placing a " as the first character in the search
string, Scred finds a match only if it finds the string at the beginning
of the line.

Changing Strings

The CHANGE command replaces all occurrences of a string within the
specified range of lines or over the entire edit buffer. To use the
CHANGE command, type:

ch[ange] start-line end-line [ENTER]

If you omit start-line and end-line, Scred searches the entire edit
buffer.

3-5

Screen Editor Command Mode / 3

When you invoke the CHANGE command, Scred prompts you to enter
a Search mask:. Enter the string you want to change. Scred then
prompts you to enter 2 Change mask:. Enter the new string.

If Scred finds the search string, it displays the lines, including the line
numbers, in which the changes occurred.

Note: The CHANGE command accepts a match first word
only character. By placing a » as the first character in the
search string, Scred finds a match only if it finds the string at
the beginning of the line.

Using Wild Cards

When entering the search string for the FIND, SEARCH and CHANGE
commands, you can optionally use the wild card character "?". The
wild card character matches any one character in the specified
location. For example:

m?222? [ENTER]

Scred matches all strings that begin with the letter "m" and are
followed by five characters. Sample strings that would match are:
"millio," "mister,"” and "my dog."

2?_27 [ENTER]

In this example, Scred matches all five character strings with an un-
derscore character () in the third character position. Some sample
strings that match this string are: "SS_ID," "WA 86," and " _dj."

Note: Scred matches spaces between words when searching
for a wild card string.

3-6

Screen Editor Command Mode ! 3

Miscellaneous Commands

The GOTO command positions the cursor on a specified line and
enters Edit Mode. To position the cursor, type:

gloto] line-number [ENTER]
The CHD command changes the current working directory to the

specified directory. You can specify either a relative or absolute path
to the new directory. To change directories, type:

chd pathname [ENTER]

The DIR command displays the directory listing for the current
directory. To obtain a listing, type:

dir [ENTER]
Scred can handle files with tabs in them. However, tabs are not a

function of Scred. The TABS command lets you set tab stops at each n
characters. To set the tab stops, type:

ta[bs] n [ENTER]
Scred sets tabs at every four characters by default.

Another feature of Scred is auto-indent. If you enter an indented line,
Scred automatically aligns the next line with it.

The NOTAB command turns off the auto-indent function. To disable
the auto-indent feature, type:

not[ab] [ENTER]

3-7

Screen Editor Command Mode | 3

The AUTO INDENT command turns the feature back on. To enable the
auto-indent feature, type:

au[to indent] [ENTER]
The $ command lets you execute a shell command line from within
Scred. To execute an OS-9 command, type:

$command-line [ENTER]

For example, to list the contents of a file, type:

$list filename [ENTER]
When you use the SHELL command ($ [ENTER]), OS-9 starts a new
shell (if your computer has enough free memory). In this way it can

process several OS-9 commands. To return to the Scred > prompt,
press [CTRL][BREAK].

Exiting Scred

The EXIT command ends the current editing session. If a file exists,
Scred saves the file to disk and returns to the OS-9 system. To exit
Scred, type:

ex[it] [ENTER]

3-8

Chapter 4

Edit Mode

The Edit Mode lets you control and modify text in the edit buffer and
on the screen display. You can enter Edit Mode from Command Mode
by typing ed [ENTER] or by pressing [CTRL][E]. You can enter Edit
Mode from Insert Mode by pressing [CTRL][BREAK]. When you enter
Edit Mode, Scred displays the text of the file being edited.

Commands in this chapter, appear in uppercase as they appear on your
keyboard. Unless specifically noted, you do not have to press [SHIFT]
to invoke the commands.

Getting Help

You can display help information at any time while in Edit Mode. To
do so, press ?. Scred displays a list of commands at the top of the
screen. The commands are divided into four groups:

o Cursor control keys
e Edit buffer controls
e CUT and PASTE commands

® Miscellaneous commands

Press the spacebar to review the display for each group. Press q to
exit the help function.

4-1

Screen Editor Edit Mode | 4

Controlling the Cursor

The following table lists the keys Scred uses to position the cursor.
When looking at this table, notice that the location of each key on the
keyboard is related to the movement it performs.

Key Action

I moves the cursor up one line

, (comma) moves the cursor down one line.

J moves the cursor left one character
L moves the cursor right one character
K moves the cursor alternately to the beginning or end of

the current line
H moves the cursor one word to the left

; moves the cursor one word to the right

Scrolling the Screen

Scred uses four keys to scroll the screen. The table below lists the
keys and their descriptions. As before, notice the location of the keys
on your keyboard.

Key Action

8] scrolls the screen up continuously
M scrolls the screen down continuously
0] scrolls the screen up

scrolls the screen down

The continuous scroll feature is useful when you want to quickly scan
through a file. Use the space bar to pause and restart scrolling. Type
any other character to terminate scrolling.

4-2

Screen Editor Edit Mode | 4

When scrolling down one screenful, the line at the bottom of the
screen scrolls to the top of the screen. When scrolling up one
screenful, the line at the top of the screen scrolls to the bottom of the
screen.

Moving to a Specific Line

The GOTO command moves the cursor to the specified line within the
edit buffer. To move the cursor to a specific line, press G. Scred
prompts you to enter the line number with the prompt goto:. Enter the
line number to which you want to move the cursor. Scred positions
the cursor at the beginning of the specified line and positions that line
on the third line of the screen.

Line 1 is the first line of the edit buffer. Any number higher than the
last line number causes the last line to be selected.

Finding a String

The FIND command searches for a specified string and positions the
cursor on the first character of that string. To invoke FIND, press F.
Scred prompts you to enter a Search mask:. Type the string you want
to find. If Scred finds the string, it positions the cursor on the first
character of the string and positions the line in which the string
occurred on the third line of the screen. If Scred cannot find the
string, it displays the message, find: no match.

To find another occurrence of the same string, press F and press
[ENTER] for the search mask. Scred moves the cursor to the next
occurrence of the previously entered string.

4-3

Screen Editor Edit Mode | 4

Replacing Strings

The REPLACE command lets you substitute one string for another. To
replace a string, press R [ENTER] and Scred prompts you to enter a
Search string:. Enter the string you want to replace. Scred then
prompts you to enter the Change string:. Enter the new string.

To replace the next occurrence of the search string with the same
string, press R and press [ENTER] for both prompts.

Deleting Text

Scred offers a variety of ways to delete text. You can delete
characters, words, and lines. The following table summarizes the key
commands and their definitions.

Key Action

[«] deletes the character to the left of the cursor

[CTRLI[;] deletes the character under the cursor

[CTRL][A] deletes one word to the left of the cursor

[CTRL][D] deletes one word to the right of the cursor

[CTRLJIC] deletes from the current cursor position to the end of
the line

[CTRLI{Z] deletes from the current cursor position to the

beginning of the line
[CTRLIIX] deletes the current line
Note: If you accidentally delete text, you can recover by

pressing [CTRL][F]. The [CTRL}[F] command restores the
current line to its original state.

4-4

Screen Ediror Edit Mode | 4

Inserting or Replacing a Single Character

Scred easily lets you insert one character or substitute one character
with another without having to enter Insert Mode.

The REPLACE CHARACTER command replaces the character under
the cursor. To replace a character, type Xcharacter. For example,
typing Xz replaces the character under the cursor with a "z."

The INSERT CHARACTER command inserts a character in front of
the character under the cursor. To insert a character, type Bcharacter.
For example, typing Ba inserts an "a" in front of the character under
the cursor.

Cutting and Pasting

Scred's cut and paste feature lets you move a block of text and insert
it at another location. Scred lets you move, delete, or duplicate blocks
of text.

Before you move a block of text, you must mark the beginning point
of the block. The SET command marks the starting line. To mark a
line, move the cursor to the first line of the block of text you want to
move, and press S. To mark in the middle of a line, first break the line
into two lines, and then mark it. Scred displays the marked line in
reverse video if your terminal has the capability.

Next, move the cursor to the last line of the text block you want to
move. Use the CUT command to remove the text from the edit buffer.
Scred places the text in its pasze buffer.

You can add more text to the paste buffer by using the APPEND
command. To use the APPEND command, mark the beginning of the
text block using SET, and move the cursor to the end of the block.
Press A, and Scred appends the text block to the text already in the
paste buffer.

4-5

Screen Editor Edit Mode | 4

Use the PASTE command to return the contents of the paste buffer to
the edit buffer. Scred pastes text on the line above the current line.
Therefore, to paste the text, position the cursor one line below the line
on which you want the text inserted, and press P.

You can also duplicate text by using the NON-DESTRUCTIVE CUT
command. To do so, mark the beginning of the text block using the
SET command and move the cursor to the last line of the text to be
duplicated. Press N and Scred copies the text block into the paste
buffer. The text in the edit buffer is untouched.

Scred also offers a NON-DESTRUCTIVE APPEND command. Mark
the beginning of the text block (SET), and move the cursor to the last
line of the text to duplicate. Press v, and Scred appends a copy of the
text to the end of the paste buffer. The text in the edit buffer is
untouched.

The ERASE command clears the paste buffer and returns its memory.
Press E to erase.

Scred also lets you write sections of text to a file using the WRITE
command. To do so, mark the beginning of the block (SET), and move
the cursor to the last line of the block. Press P. Scred prompts you to
enter an output filename. If you invoke the WRITE command without
marking a text block, Scred writes the paste buffer to the output file.
If Scred cannot create the file, it issues an error message.

Editing Lines

Scred allows you to use lines of up to 256 characters in length.
However, because Scred does not wrap lines, you can see only a
portion of the line if it is longer than the width of your screen. Scred
offers an easy method of breaking and joining lines.

4-6

Screen Editor Edit Mode | 4

The BREAK command splits the line at the current cursor position.
Scred inserts the break before the cursor. To break a line, press
[CTRL][B].

The JOIN command joins the current line with the one above. To join
two lines, press [CTRL][P]-.

Displaying the Status Line

The status line displays the line number, column number, amount of
free space in the edit buffer, paste buffer size, current filename, and
the current mode (Command, Edit, or Insert). To display the status
line, press [CTRL][G). Press the space bar to remove the status line
from the screen.

The following sample status line shows the current cursor position to
be Line 50, Column 0. There is more than 14k bytes free in the edit
buffer and 51 bytes of text stored in the paste buffer. The filename is
Example, and Scred is in the Edit Mode.

L:50 C:0 MB:14526 CB:51 F:Example edit:

4-7

Chapter 5§

Insert Mode

The Insert Mode lets you enter new text into the edit buffer. To enter
the Insert Mode from the Command Mode, type in [ENTER]. To enter
the Insert Mode from the Edit Mode, press [ENTER] or [4 1.

Scred inserts the new text before the current cursor position and stores
it exactly as you type it. You can enter control characters. To enter
control characters, press [CTRL][V] followed by the character you wish
to enter. For example, to enter a Control-L into the edit buffer, press
[CTRL][V], then [L].

5-1

Chapter 6

Quick Reference

The following tables provide a quick reference to the commands for
the Command, Edit, and Insert Modes.

Command Mode

Command Description

ab[ort] Cancels all changes made to the
current file, erases the entire edit
buffer, and closes the current file.

ad[d] filename Adds the text of the specified file to
the edit buffer, starting at the line
above the current cursor position.

aufto indent] Tells Scred to automatically indent
the next line after a carriage return
in the previous line begun with a tab
or space(s). Scred indents the new
line to the same column position as
the previous line. Scred starts up in
auto-indent mode.

chlange][start-line [end-line]] Replaces all occurrences of a string
within the specified range of lines.
Omitting a range value causes Scred
searches the entire edit buffer.

6-1

Screen Editor Quick Reference | 6

Command Description

chd pathname Changes the current working
directory.

clfear] Erases all text in the edit buffer.

de[lete] [start-line [end-linel]

dir

ed[it]

ex[it]

fi[nd]

gloto] line

in[sert]

molre]

ne[w] filename

not[ab]
ol[d]

Scred does not close the file.

Erases the specified range of lines
from the edit buffer.

Displays the directory listing for the
current working directory.

Enters Edit Mode. You can also use
[CTRL][E]

Writes the edit buffer to the output
file and exits Scred.

Searches for the first occurrence of
a string. Enters the Edit Mode.

Moves the cursor to the specified
line number. Enters the Edit Mode.

Enters Insert Mode.

Saves the text in the edit buffer to
the output file and reads in the next
section of the input file.

Creates a new file with the specified
filename and enters Insert Mode.

Turns off the auto-indent mode.

Clears the edit buffer, opens an
existing file, and enters Edit Mode.

6-2

Screen Editor Quick Reference / 6

Command Description

selarch] [szare-line [end-line]] Searches for a string within the
specified lines. If you omit the line
numbers, Scred searches the entire

edit buffer.

ta[bs] n Sets the tab stops to every n
characters.

up[date] Writes changes to the output file

and re-enters Edit Mode.

wr[ite] Writes the contents of the edit
buffer and the remainder of the
input file, if any, to the output file.

$ [command] Executes a shell command line,
[CTRL]IG] Displays the status line.

Edit Mode

Cursor Movement Commands

Command Description

| Moves the cursor up one line.

, (comma) Moves the cursor down one line.

J Moves the cursor left one character.

H Moves the cursor left one word.

L Moves the cursor right one character.

Moves the cursor right one word.

K Moves the cursor to the beginning or end of the line.

R Replaces a string.

6-3

Screen Editor Quick Reference | 6

Command Description

U Scrolls the text up. Press the space bar to stop and
start. Press any other key to abandon.

M Scrolls the text down. Press the space bar to stop and
start. Press any other key to abandon.

O Scrolls text up on page.
Scrolls text down one page.

G Moves the cursor to the specified line.

F Finds the first occurrence of a string.

X char Replaces the character under the cursor with the
specified character.

B char Inserts the specified character before the cursor and
advances the cursor.

[«] Deletes the character to the left of the cursor.

{CTRL][;] Deletes the character under the cursor.

[ENTER] Enters Insert Mode.

[y] Moves the text in the edit buffer down one line and
enters Insert Mode with the cursor on the new line.

[CTRL)[BREAK] Returns to Command Mode.

? Displays help information.

[CTRL][A] Erases one word to the left of the cursor.

[CTRLIID] Erases one word to the right of the cursor.

[CTRLI[F] Cancels any changes made to the current line.

6-4

Screen Editor

Quick Reference | 6

Command Description

[CTRL][C] Erases text from the cursor to the end of the line.

[CTRLI][Z] Erases text from the cursor to the beginning of the
line.

[CTRL]IX] Erases the entire line.

[CTRL][B] Splits the current line into two lines at the cursor
position.

[CTRLI][P] Joins the current line with the line above.

[CTRL][G] Displays the status line.

Cut and Paste Commands

Command

Description

S

Set. Marks the first line of a text block to be deleted,
duplicated, or moved. If the starting mark is already
set, s removes the mark.

Cut. Deletes the selected block of text from the edit
buffer and stores it in the paste buffer.

Non-destructive Cut. Places the selected block of
text in the paste buffer without altering the edit
buffer.

Paste. Inserts the contents of the paste buffer at the
line above the cursor.

Append. Deletes the specified block of text from the
edit buffer and adds it to the end of the paste buffer.

6-5

Screen Editor Quick Reference / 6

Command Description

v Non-destructive Append. Appends the specified
block of text to the paste buffer without altering the
edit buffer.

E Erase. Erases the content of the paste buffer and
releases its memory space to the edit buffer.

w Write. Writes the specified lines to the output file. If
no lines are marked, Scred writes the paste buffer to
the output file.

Insert Mode

Command Description

[CTRL][V]char Inserts the specified control character into the edit
buffer.

[CTRL}IBREAK] Returns to Edit Mode.

6-6

Screen Editor

Index

$ command 3-8

-7 (list options) 1-3

-b (buffer size) 1-3, 3-3

-¢ (embedded video attributes) 1-3
-g (graphics terminals) 1-3
-1 (display lines) 1-3

-t (terminal type) 1-3

-w (text width) 1-3

-z (termset path) 1-3, 2-1
> prompt 3-1

? (display help) 4-1

? (wild card) 3-6

ABMS8S terminal 2-1
ABMSSH terminal 2-1
ABORT command 3-4

ADD command 3-3

adding terminal type 2-1
allocating memory 1-3
ANSI terminal 2-1

APPEND command 4-5 - 4-6
auto-indent 3-7 - 3-8

BREAK command 4-7
buffer size 1-3, 3-3

CHANGE command 3-5 - 3-6
character

deleting 4-4

inserting 4-5
characters per line 1-3

Screen Editor Index

CHD command 3-7
CLEAR command 3-4
clear screen code 2-3
clearing to end of line code 2-3
closing a file3-4
COCO terminal 2-1
command mode 1-1-1-2
commands 3-1

$ 3-8

ABORT 34

ADD 3-3

APPEND 4-5-4-6

BREAK 4-7

CHANGE 3-5-3-6

CHD 3-7

CLEAR 34

CUT 4-5-4-6

DELETE 34

ERASE 4-6

FIND 3-5,4-3

GOTO 3-7,4-3

INSERT 4-5

JOIN 4-7

MORE 34

NEW 1-2

NOTAB 3-7 - 3-8

REPLACE 4-4-4-5

SEARCH 3-5

SET 4-5-4-6

TABS 3-7

UPDATE 3-3

WRITE 3-3,4-6
configuring terminals 1-3
creating a file 1-2, 3-2
cursor control 4-2
cursor control code 2-2 - 2-3
cursor offset value 2-3

Screen Editor Index

cursor, moving 4-3
CUT command 4-5 - 4-6
cutting and pasting 4-5 - 4-6

DELETE command 3-4
deleting

character codes 2-3

line codes 2-3

text 3-4, 4-4
directories

changing 3-7

listing 3-7
duplicating text 4-5-4-6

edit buffer, erasing 3-4

Edit mode 1-1, 3-1-3-2,4-1-4-7
ERASE command 4-6

erasing the edit buffer 3-4
exiting Scred 3-8

features 1-1
file
closing 3-4
creating 1-2
reading in 3-4
saving 3-3
FIND command 3-5, 4-3

GOTO command 3-7,4-3
graphics 1-3

help 4-1
indent, auto 3-7 - 3-8

INSERT command 4-5
Insert Line code 2-4

Screen Editor

Index

insert mode 1-1, 3-2, 5-1
characters 4-5
files 3-3

JOIN command 4-7
KT7 terminal 2-1

line character width 1-3
lines
deleting 3-4
moving to 4-3
listing
directories 3-7
options 1-3

Maketerm 2-1,2-5-2-6
mask, search 3-5 - 3-6, 4-3
memory allocation 1-3
modes
Command 1-1-1-2
Edit 1-1, 3-1-3-2,4-1-4-7
Insert 1-1, 3-2, 5-1
MORE command 3-4

name of terminal 2-2
NEW command 1-2, 3-2
new text 5-1

NOTAB command 3-7 - 3-8

operation modes 1-1
options 1-2-1-3
0S-9 commands 3-8

paste 4-5-4-6

Screen Editor

Index

quitting Scred 3-8

reading files 3-4

replacing characters 4-5
REPLACE command 4-4 - 4-5
reverse video codes 2-4

saving text 3-3
screen, scrolling 4-2 - 4-3
screen length code 2-4
screen width code 2-4
scroll 4-2 -4-3
SEARCH command 3-5
search mask 3-5-3-6,4-3
SET command 4-5 - 4-6
shell 3-8
size of buffer 3-3
starting Scred 1-2-1-3
status line 4-7
string
changing 3-5-3-6
replacing 4-4
searching for 3-5, 4-3
TABS command 3-7
terminal 2-1
name 2-2
type 1-3,2-1
terminating Scred 3-8
termset file 1-2 - 1-3,2-1-2-6
text
deleting 3-4, 4-4
duplicating 4-6
entering 5-1
saving 3-3
type of terminal 1-3, 2-1

Screen Editor

Index

UPDATE command 3-3

VDG terminal 2-1
video attributes 1-2

width of line 1-3
wild cards 3-6
WRITE command 3-3, 4-6

Relocating Macro Assembler

Contents

Chapter 1/ INroductionc..ccooeeivienieimrnnenererersnnnesassesesesesens 1-1
INStAllAtION ..oovveriice ettt sen et e e 1-2
USING the RMA ..ot e e srens e saas s 1-2
AVALADIE OPLONSoveevireniericvenienieieierteeinrrere et eresesansesresaeseosesne 1-3

Chapter 2/ General Informationccoooeoeeeevenennieinneerenanniennenns 2-1
Source File FOIMALc..covoireerieienieriecrecnreinitsresereerennseresessesnsanns 2-2

The Label FIeldc.covveeeieviirirercreerierenieeeeeesnsansiescsesesssennes 2-2
The Operation Fieldccovveviveceeerieicceeseier s evveneenenes 2-3
The Operand Fieldc.ccooovvvviveeimieniiecceeenver e 2-3
The Comment Fieldcccooeemieviieninerenriricneeeniere e eneenns 2-4
The Assembly Listing FOrmatoccocvceeeivvnrerirerineninecreneeeeanne 2-4
Evaluation of EXPreSSiOnscveeeruereenuerenirerecresresreesnensasesseesnannenes 2-4
Expression OPerandscccovevereeevcrinnescerencsrernunensereearansas 2-5
EXPIession OPETatorscoveevreeerioorerercscscesresemneesesessosssnnes 2-7
SymbBOLiC NAIMESoovveeiireericrrrteneieereereee e eve s s e eseennens 2-7
Symbolic Names for System Callsc.c.ococevrieeemrmemririecneencnenins 2-8
The DEFS DITECIOTY .vcvvevrveerrirniireerrssereieinsernsessssiessssesssessosassssasans 29
The LIB DITECOTY ..vevevreecncvirereiirenirisensiennencacrsassseesencsssessssnseens 2-10

Chapter 3/ MACTOS c....ccoririrceeeceeeccecreereie et seeseeeesesessesenesseseaeseiens 3-1
MACTO SITUCLUTEcovevrirerrenieeeeenteierieeeereseeeeseseesesserenessanmesessessenes 3-2
MACTO ATZUITIENILS .cuvevvereererenrenverseranneeessemseressereeeseessesnorsoeeseseessensase 33

Special ATGUIMENLSvverierneereieecriorienrererereseresnsesseeesessesevenes 34
Automatic Internal Lablesccceovniveeveninenrerenececeniiernceeeeen 3-5
Documenting IMACTOSccecveerrerieerneeerrrseesessensernereeseseossessoneenenes 3-7

Chapter 4/ Program Sectionscocccinivcninerecnnisicninnssnnes 4-1

Program Section Declarationscccccccevceeivviieeceecccnnnvnininnnes 4-2

Relocatable Macro Assembler Contents

Chapter 5/ Program Section Directivesccocooeceevcenecrirnenneas 5-1
PSECT DITECHVEovovrvvereeeeniniecresserisieeenesiaesssasasesiscscsesenesensnsasones 5-1
VSECT DITECHVEovvvveiereeriernnirresnesesiniesnsenserssessesssessssesesersasesenens 5-3
CSECT DITECHVEcovvevererrerernrerrrirmensreseroresserasenmesssesesssersssoserssssesess 5-5

Chapter 6 / Assembler Directive Statementsccooccvevrreenne. 6-1
End StAtEmMENtcccoveveeieiiiienriiesieererereeeeerinsnierrnioreecsesseseseneerasnaseseses 6-1
EQU and SET StAteIMENLScoveeveereereereereireereeseeeesseeneesessreeeesesnes 6-1
FAIL SEALEIMNENL ...c.cueeererecenirenececeseiesereanrestuesesesetsaesesesssesesssssesesones 6-2
IF, ELSE, and ENDC Statementsccceceeeerrerrervererersoraeressnrassaens 6-3
NAM and TTL Statementscccecveverrrererveenrrenresrersiorerassesnsennnns 6-5
OPT SAtEIMENLccecurrrrererenrerireeeirssereserencstnuesesmssssessenssesessesesssenes 6-5
PAG and SPC Statementsceeceeeerrecrcrirnrrenrereresciereresesnnsnsinsens 6-6
REPT and ENDR Statementscccoeconevmnrrenenccrererencnssenineserens 6-6
RMB SLaeINENL ...cvververeneecnrrenreiririoreseesesecsernenssensesssnssssssesesessasesesens 6-7
USE StateIMENLtcovvveurrerenertrererenireniseoresessssseseessssesesesessssssssesssssnsens 6-8

Chapter 7 / Pseudo-INStructionscoocccecmmureeneneeresrerenennenens 7-1
FCB and FDB Statementsco.cceveeverererinrarnresssrersarrssseesssosensens 7-1
FCC and FCS Statementsco.ceeeeerereneeiernrirererecreereersesesensscsenes 7-2
RZB StatemMEnLtceoeveereererinieirietererieseeetiesesesseosesssseneestsessosesseses 7-3
OS9 SLALCINENL .coveveneeiercrererirnrintriererceeeeereeereesssesesesssessesceseresrasesesens 7-3

Chapter 8 / Accessing the Data Areacccooveeeveevceccrcnenncnennene. 8-1
Using Non-Initialized Datacccocoveerveenrinierrnieerenrneeennsrenenens 8-1
Using Initialized Datacooovvveeevervevciiirrieeeneeecrieresisioreiceiceas 8-2

Chapter 9/ Using the LiNKerccccocevvieiiniuneerinnnennesienecenees 9-1
Running the LInKercoccoivmererieieneeneeironnieenecreseeresresesieveneenenes 9-2
AVailable OPHONScccvevireieireererirreerirerre e eeiese et ereseesesesaenses 9-2

Chapter 10/ Error MesSSagescocooeiereeerirenerennessessessesscnsnnenns 10-1

Chapter 11/ EXaMPIESocovviiceiereeeerireernnessesenenesesesssssssenssnens 11-1

Appendix A / 6809 Instructions and Addressing Modes A-1

Chapter 1

Introduction

The OS-9 Level Two Relocatable Macro Assembler (RMA) is a full-
feature relocatable macro assembler and linkage editor designed to be
used by advanced programmers or with compiler systems.

The RMA lets you assemble sections of assembly-language programs
independently to create relocatable object files. The linkage editor,
RLINK, takes any number of program sections and/or library sections,
and combines them into a single executable OS-9 memory module.
The RMA's features include:

o 0S5-9 modular, multi-tasking environment support
e Built-in functions for calling OS-9 system routines
e Position-independent, re-entrant code support

e Creating of standard subroutine libraries by allowing programs to
be written and assembled separately and then linked together.

e Macro capabilities

e 0OS-9 Level Two compatibility

e Automatic resolution of global data and program references

e Conditional assembly and library source file support

This manual describes how to use the RMA and basic programming
techniques for the OS-9 environment. However, this manual does not
attempt to teach 6809 assembly language programming. If you are
not familiar with 6809 programming, consult the Motorola 6809

programming manuals or an assembly-language programming book
available at most bookstores and libraries.

1-1

Relocating Macro Assembler Introduction ! 1

Installation

The RMA distribution diskette contains a number of files that you will
want to copy to a working system disk. After copying the files, store
the original diskette in a safe place.

The files included on the distribution diskette are:

RMA Relocatable Macro Assembler program. Copy this file to
the system's execution directory (CMDS).

RLINK Linkage Editor program. Copy this file to the system's
execution directory (CMDS).

ROQOT.a Assembly-language source code file used as a front end
section for programs that use initialized data. Copy this
file to an RMA working data directory.

Using the RMA

RMA is a command program that you can run from the OS-9 Shell,
from a Shell procedure file, or from another program. The basic format
used to run the RMA is:

RMA filename options > listing

The filename argument represents the source text file. It is the only
required argument.

The options argument lets you specify certain RMA features, such as
the ability to generate a listing or object file. The list of available
options is given in the next section.

The listing option tells the RMA to generate a program listing. The
redirection symbol (>) lets you redirect the listing to a printer or a
disk file, or even pipe the listing to another program. If you omit the
redirection symbol, OS-9 prints the listing on your terminal screen.

1-2

Relocating Macro Assembler Introduction / 1

Available Options

You specify options on the command line by using the prefix - or --.
Use - to turn on an option and -- to turn off an option. The available
RMA options are:

-0=path

-1

-dn

Writes the relocatable output to the specified mass
storage file. (Default=0ff)

Writes the formatted assembler listing to standard
output. When this option is off, OS-9 prints error
messages only. (Default=off)

Suppresses conditional assembly lines in assembler
listings. (Default=on)

Sends a top-of-form signal to the printer.
(Default=off)

Lists all code bytes generated. (Default=0ff)

Suppresses macro expansions in assembler listings.
(Default=0n)

Suppresses error messages in assembler listings.
(Default=on)

Prints the symbol table at the end of the assembly
listing. (Default=off)

Sets the number of lines per page, for the listing, to ».
(Default=66)

Note: You can override command line options by using the
OPT statement with a source program. See the OPT statement
for more information.

Relocating Macro Assembler Introduction ! 1

Examples
RMA prog5 -I -s -¢ >/p [ENTER]

This command line tells RMA to assemble the source program, Prog5.
The -1 and >/p options causes the RMA to write the formatted
assembler listing to the printer. The -s option tells the RMA to print
the symbol table. The -c option tells the RMA not to print any
conditional assembly lines in the listing.

RMA sample -l -x --c >/h0/programs/sample.ist [ENTER]

This command line assembles the source program, sample, and sends
the listing to the file Sample.lst on the hard disk. The -x option tells
the RMA to suppress macro expansion in the listing. The --c option
tells the RMA to print conditional assembly lines.

1-4

Chapter 2

General Information

The RMA 1is a two-pass assembler. During the first pass through the
source file, it creates the symbol table. During the second pass, the
RMA places the machine-language instructions and data values into
the relocatable object file.

Writing and testing an assembly-language program using the RMA
involves a basic edit, assemble, link, and test cycle. The RMA
simplifies this process by letting you write programs in sections that
you can assemble separately then link to form the entire program.
With this method, if you must change one program section, you do not
have to reassemble the entire program.

When using the RMA to develop assembly-language programs, follow
these steps:

1. Create a source program file using a text editor, such as the OS-9
Level Two screen editor, Scred.

2. Run the RMA to translate the source file(s) to relocatable object
module(s). ’

3. If the assembler reports any errors, correct the source files and
reassemble.

4, Run RLINK to combine the relocatable object modules(s).

5. If RLINK reports any errors, correct the source files, reassemble,
and relink.

6. Run and test your program. You can use the Interactive Debugger
to help you with this step. Correct errors, if any.

You now have an executable assembly-language program.

2-1

Relocating Macro Assembler General Information | 2

Source File Format

The assembler reads its input from the specified source file. This
source file contains variable-length lines of ASCII characters. You
can create the source file using any text editor, such as Scred.

Each line of the source file is a text string terminated by an end-of-
line character (carriage return). The maximum length for a line is 256
characters. Each line can have from one to four fields, which are:

e Label field (optional)

e Operation field

e Operand field (for some operations)
e Comment field (optional)

You can specify an entire line as a comment by placing an asterisk (*)
as the first character of the line.

Note: The assembler ignores any blank lines in the source
file.

The Label Field

The label field begins at the first character position of the line. Some
statements require labels (for example, EQU and SET); others must not
have them (for example SPC and TTL).

If a label is present, the assembler usually defines the label as the
program address of the first object code byte generated for the line.
Exceptions occur in the SET, EQU, and RMB statements. In the SET
and EQU statements, the assembler gives the label the value of the
result of the operand field. In the RMB statement, it gives the current
value of the data address counter.

The label must be a legal symbolic name consisting of from one to
eight upper or lowercase characters. Letters, numbers, dollar signs

2-2

Relocating Macro Assembler General Information / 2

(%), dots (.), and underline characters () are all allowed. The first
character must be a letter. You must not define a label more than once
in a program (except when using it with the SET directive).

If you follow the symbolic name in a label field with a colon (:), the
RMA makes the name globally known to all modules that are linked
together. In this way, you can execute a branch or jump to a label in
another module. If you do not place a colon after the label, that label
is known only in its own PSECT .

If a line does not contain a label, the first character must be a space.

The Operation Field

The operation field specifies the machine-language instruction or
assembler directive statement mnemonic name. Use one or more
spaces between it and the label field.

Some instructions include a register name (such as LDA, LDD, or
LDU) in the operation field. In these cases, you cannot separate the
register name from the rest of the field with a space. The RMA accepts
instruction mnemonic names in either upper- or lowercase characters.

Instructions generate from one to five bytes of object code depending
on the specific instruction and address mode. Some assembler
directives (such as FCB and FCC) also cause the assembler to generate
object code.

The Operand Field

The operand field follows the operation field. You must separate the
two fields by at least one space. Some instructions do not use the
operand field; other instructions and assembler directives require an
operand to specify an addressing mode, operand address, parameters,
and so on.

Relocating Macro Assembler General Information / 2

The Comment Field

The comment field is the last field of a source statement. It is an
optional field you can use to include a comment about the instruction.
The RMA does not process this field but copies it to the program
listing,

The Assembly Listing Format

If you specify the -1 option with the RMA, the assembler generates a
formatted assembly listing. The output listing uses the following
format:

0098 0032 59 + rolb
00117 0045=17ffb8 l_“copyitulbsr. ~dmove copy result

VAN PANIVAN
4[ﬁ operand
mnemonic

label comment area

macro expansion indicator

Object code bytes

—external reference indicator

“location counter value

—listing line number

Evaluation of Expressions

Operands of many instructions and assembler directives can include
numeric expressions in one or more places. The assembler can
evaluate expressions of almost any complexity using a form similar to
the algebraic notation used in programming languages such as BASIC
and FORTRAN.

An expression consists of an operand and an operator. An operand is
a symbolic name and an operator specifies an arithmetic or logical
function, All assembler arithmetic uses 2-byte (16-bit binary

2-4

Relocating Macro Assembler General Information / 2

internally) signed or unsigned integers in the range of 0 to 65535 for
unsigned numbers, or -32768 to +32767 for signed numbers.

In some cases, the assembler expects expressions to produce a value
that fits in one byte, such as 8-bit register instructions. Such values
must be in the range 0 to 255 for unsigned values and -128 to +127 for
signed values.

If the result of an expression is outside its range, OS-9 returns an error
message.

0S-9 evaluates expressions from left to right using the algebraic order
of operations. That is, it performs multiplication and divisions before
addition and subtraction. You can use parentheses to alter the natural
order of evaluation.

Expression Operands
You can use the following items as operands within an expression:

decimal numbers A positive or negative value con-
taining one to five digits (values are
in the range of -32768 through
+32767). Examples:

100
-32767
0

12

2-5

Relocating Macro Assembler

General Information | 2

hexadecimal numbers

binary numbers

character constants

symbolic names

instruction counter

The dollar sign ($) followed by one
to four hexadecimal characters (0-9,
A-F, or a-f). Examples:

$EC00
$1000
$3

$0300

Percent sign (%) followed by one to
16 binary digits (0 or 1). Examples:

%0101
%1111000011110000
%10101010

%11

Single quotation mark () followed
by any printable ASCII character.
Examples:

One to nine characters, the first
character must be a letter. Legal
characters are upper- and lowercase
letters (A-Z, a-z), digits (0-9), and
the special characters underscore
(), period (.), dollar sign (8), and
"at" (@).

Placed at the beginning of the ex-
pression, the asterisk (*) represents
the program instruction counter
value.

2-6

Relocating Macro Assembler General Information | 2

Expression Operators

The following list shows the available operators in the order in which
0S-9 evaluates them. Operators listed on the same line have identical
precedence. OS-9 processes them left to right when they occur in the
same expression.

Assembler Operators By Order of Evaluation

- negative A logical NOT
& logical AND ! logical OR
* multiplication \ division

+ addition - subtraction

Logical operations are performed bit-by-bit for each bit of the
operands.

Division and multiplication functions expect unsigned operands, but
subtraction and addition accept signed (2's complement) or unsigned
numbers. OS-9 returns an error if you attempt to divide by zero or
multiply by a factor that results in a product larger that 65535.

Symbolic Names

A symbolic name consists of one to nine lower- or uppercase
characters, decimal digits, or the special characters dollar sign (%),
undescore (), period (.), or the at (@). The first character in a
symbolic name must be a letter. Some examples of legal symbolic
names are:

HERE there SPLO30 PGM_A
Q1020.1 t$integer L.123.X a002@

Note: The RMA does not convert lowercase characters to
uppercase. The names file A and FILE A are unique names.

2-7

Relocating Macro Assembler General Information / 2

The following are examples of illegal symbol names:
2move The first character is not a letter.
main.backup There are more than nine characters.

Ibl#123 The number sign (#) is not a legal character.

You define a name the first time you use it as a label in an instruction
or directive statement. You can define a name only once in a program
(except if it is a SET label). OS-9 returns an error message if you
attempt to redefine a name.

If you use an undefined symbolic name in an expression, the RMA
assumes the name is external to the PSECT. The RMA records
information about the reference so the linker can adjust the operand
accordingly.

Note: You cannot use external names in operand expressions
for assembler directives.

Symbolic Names for System Calls

A system-wide assembly language equate file called OS9defs.a
defines the RMA symbolic names for all system calls. You can include
this file when the RMA assembles hand-written or compiler-generated
code by using the USE assembler directive (see Chapter 6). The RMA
has a built-in macro that generates the system calls from the symbolic
names.

Symbolic System names can also be resolved by using sys.l in the LIB
directory with RLINK. This chapter contains additional information
on the LIB Directory. Chapter 9 discusses RLINK.

2-8

Relocating Macro Assembler General Information | 2

The DEFS Directory

The OS9defs.a file contains the following groups of defined symbols:

System Service Request Code definitions
1/0 Service Request Code definitions
File access modes
Signal codes
Status codes for GetStat/PutStat structure formats
Module definitions
Universal module offsets
Type-dependent module offsets
System module
File manager module
Device driver module
Program module
Device descriptor module
Machine characteristics definitions
Error code definitions
System dependent error codes
Standard OS-9 error codes

To view the contents of the OS9defs.a file, which includes a brief
description of each symbol name, use the OS-9 LIST command. For
example, if your OS-9 Level Two Development Pack Diskette 1 is in
the current drive, type:

list /d0/dets/os9defs.a

Or send the file to your printer by typing:

list /d0/defs/os9defs.a > /p
To include the OS9defs file with your source code when assembling a
file, you can use the following statements:

itp!

use os9defs.a
endc

2-9

Relocating Macro Assembler General Information / 2

However, OS9Defs.a provides the assembly source from which Sys.1
is created (see the following section "The LIB Directory”). In many
cases, using Sys.l requires less memory and processes faster.

For programmers who prefer to use the OS-9 Level One ASM program
for writing code, the DEFS directory contains four other files:
Defsfile, Defsfile.dd, OS9defs, and Systype. These four files contain
Level Two information but are in the format required by ASM.

Also included in the DEFS directory are Wind.h, Stdmenu.h, Mouse.h,
and Buffs.h. These four files contain Level 2 data structures for
window, menu, mouse, and buffer manipulation using the C language.

The LIB Directory

Two OS-9 library files are also included in the LIB directory on
Diskette 1 of your Development Pack. The files are:

cgfx.l that provides Level Two graphics routines for the C
language

sys.l the system library--defines the standard symbolic
references (error messages, I$ and F$ system calls, and so
on). Use with RLINK to resolve references rather than the
USE instruction in your source code.

For instance, to link a program called Updn (see Chapter
11, "Examples"), you could type:

RLINK RELS/UPDN.R -I=/d0/lib/sys.l -0=/d0/cmds/updn

2-10

Chapter 3

Macros

At times, you might need to use an identical sequence of instructions
more than once in a program, such as a routine to display messages to
the screen. Instead of repeating the routine in your program, you can
create a macro that you can call just like any other assembly-language
instruction.

A macro defines a set of instructions with a name you assign. Using
this name, you can call the macro as many times as you want. In
addition, you can use macros to create complex constant tables and
data structures. To define a macro, use the MACRO and ENDM
directives. For example, the following macro performs a 16-bit left
shift on the Register D:

dasl MACRO
aslb

rola

ENDM

The MACRO directive marks the beginning of the macro definition.
The name assigned to the macro is dasl. To use this new macro,
specify dasl as an instruction as shown here:

Idd 12,s get operand
dasl double it
std 12,8 save operand

If the RMA encounters a macro name in the instruction field during
the assembly process, it replaces the macro name with the machine
instructions given in the macro definition. So, when the RMA
encounters the dasl macro name in the instruction field, it outputs the
codes for aslb and rola.

31

Relocating Macro Assembler Macros | 3

Normally, RMA does not expand macros on listings. However, you
can use the -x option to cause it to do so.

Note: Macros are similar to subroutines, but do not confuse
the two. A macro duplicates the routine within your program
every time you call it. It also allows some alteration of the
instruction operands. A subroutine, however, appears only
once within a program and cannot be changed. Also, you call
a subroutine using the special instructions (BSR or JSR).
Generally, using a macro instead of a subroutine produces
longer but slightly faster programs.

Macro Structure

A macro definition consists of three sections: header, body, and
terminator. The macro header marks the beginning of the macro and
assigns the macro's name. The body of the macro contains the
statements. The terminator indicates the end of the macro. The general
format is as shown here:

name MACRO /* macro header */
body *macro body */
ENDM /* macro terminator */

The name is required by the MACRO directive. It can be any legal
assembler label. You can, if you wish, even redefine a 6809 directive,
such as LDA or CLR, by defining a macro with the same name. This
lets you use the RMA as a cross-assembler for non-6809 (8- or 16-bit)
processors by either defining (or re-defining) instructions for the
target CPU.

Note: Redefinition of assembler directives, such as RMB, can
cause unpredictable consequences. Redefine with care.

Relocating Macro Assembler Macros | 3

The body of the macro contains any number of legal RMA instruction
or directive statements. You can even include references to previously
defined macros. Calling another macro from within a macro is called
nesting. For example:

times4 MACRO
dasl
dasl
ENDM

This example shows the times4 macro calling the dasl macro twice.
You can nest macros up to eight deep.

Note: You cannot define one new macro within another.

Macro Arguments

By using arguments with your macros, you can vary a macro each time
you call it. You can use arguments to pass operands, register names,
constants, variables, and so on, to the macro. A macro can have as
many as nine arguments in the operand field. An argument consists of
a backslash and an argument number (\1,\2, ...\9).

When the RMA expands the macro, the assembler replaces each
argument with the corresponding text string argument specified in the
macro call. When using arguments within the macro, you can only use
them in the operand field. You can use arguments in any order and
any number of times.

The following example macro performs the typical instruction
sequence to create an OS-9 file:

create MACRO

leax \1,pcr get addr of filename string
Ida #\2 set path nhumber

Idb #3 set file access mode

os9 I$SCREATE

ENDM

3-3

Relocating Macro Assembler Macros / 3

The first argument, \1, supplies the filename string address. The
second argument, \2, specifies the path number, and the third, \3, gives
the file access-mode code. The following instruction shows how to
call the create macro with its arguments:

create outname,2,$1E

RMA expands the create macro like this:

leax outname,pcr
lda #2

Idb #$1E

0s9 ISCREATE

Note that if an argument string includes special characters such as
backslashes or commas, you must enclose the string in double
quotation marks. For example, the following instruction calls a macro
called double and passes two arguments:

double count,"2,s"
To declare a null argument, omit the argument and use a comma to

hold its place in the sequence (if necessary). The RMA creates an
empty string. For example:

double count
or

double ,"2,s"

Special Arguments

RMA has two special argument operators that you might find useful
when constructing complex macros. They are:

\Ln Returns the length of argument » in bytes
\# Returns the number of arguments passed in a given macro
call

3.4

Relocating Macro Assembler Macros | 3

Generally, you use these special operators with the RMA's conditional
assembly statements to test the validity of arguments used in a macro
call, or to customize a macro according to the actual arguments
passed. You can use the FAIL directive if you want a macro to report
errors that occur during execution. The following example is an
expanded version of the create macro:

create MACRO

ifne \it-3 must have exactly 3 arguments
FAIL create: must have 3 arguments

endc

ifgt \L1-29 filename can be 1 - 29 characters long
FAIL create: filename too long

endc

leax \1,per get addr of filename string

Ida #2 set path number

Idb #3 set file access mode

os9 I$SCREATE

ENDM

Automatic Internal Labels

At times, it might be necessary to use labels within a macro. You can
specify macro-internal labels with \@. If there is more than one label,
you can add an extra character or characters for uniqueness. For
example, if you need two labels with a macro, you might use the
names \@A and \@B. You can add the extra character(s) before the
backslash or after the \@ symbol.

When the RMA expands the code, internal labels (\@) take the form
\@xxx where xxx is a decimal number between 000 and 999. For
example, the expansion of the labels \@A and \@B would be \O01A
and \0O1B. If the macro is called again, the expansion would be \002A
and \002B, and so on.

3-5

Relocating Macro Assembler

The following example shows a macro using internal labels:

testovr MACRO

cmpd #\1 compare to arg
bls @A branch if in range
orcc #1 set carry bit
bra \@B and skip next instruction
@A andcc #$FE clear carry
@B equ | continue with routine...
ENDM

If you call the testovr macro with the instruction:
testovr $80

RMA expands the labels in the following way:

cmpd #$80 compare to arg
bis @001A branch if in range
orce #1 set carry bit
bra @001B and skip next instruction
@001A andcc #S$FE clear carry
continue with routine...

@001B equ I

If you call the testovr macro a second time with:
testovr 240

RMA expands the labels in the following way:

cmpd #240 compare to arg

bis @002A branch if in range

orcc #1 set carry bit

bra @002B and skip next instruction
@002A andcc #$FE clear carry

@002B equ | continue with routine...

3-6

Relocating Macro Assembler Macros | 3

Documenting Macros

Although macros are a useful programming tool, you should use them
with care. Indiscriminate use can impair the readability of a program
and make it difficult for other programmers to understand the program
logic. Be sure to document your macros thoroughly.

Chapter 4

Program Sections

One of the most useful functions of the RMA is that it lets you write
programs in segments that you can assemble separately. You can then
use RLINK to combine the segments into one OS-9 memory module
with a coordinated data storage area.

When writing a program in segments, you must divide it into sections
for variable storage definitions (VSECTs) and sections for program
statements (PSECTs). By using external names, the code in one
segment can reference variables declared in another segment, or can
transfer program control to labels in another segments. The assembler
outputs a relocatable object file (ROF) for each program section. This
object file contains the object code output plus information about the
variable storage declarations for the linker to use.

RLINK reads relocatable object files, and assigns space in the data
storage area. It also combines all the object code into a single
executable memory module. To do this, RLINK must alter the
operands of instructions to refer to the final variable assignments and
must adjust program transfer control instructions that refer to labels in
other segments.

The following shows a simplified memory map after the linker has
processed three program segments (A, B, and C):

4-1

Relocating Macro Assembler Program Sections | 4

process data area

Segment A Variables
Segment B Variables
Segment C Variables

Executable Memory Module
Module Header
Segment A Object Code
Segment B Object Code
Segment C Object Code
CRC Check Value

Each section in the process data area corresponds to each program
segment's VSECT. RLINK generates the module header and CRC
check values. The Segment A Object Code is the mainline, or
beginning, segment. Each object code segment corresponds to each
program segment's PSECT.

Program Section Declarations

The RMA uses three section directives (PSECT, VSECT, and CSECT)
to control the placement of object code and allocation of variable
space in the program. The ENDSECT directive indicates the end of a
section.

PSECT indicates the beginning of a relocatable object file. PSECT
causes the RMA to initialize the instruction and data location
counters, and assemble subsequent instructions into the ROF object
code area.

VSECT causes the RMA to change the variable (data) location
counters and to place information about subsequently declared
variables in the appropriate ROF data description area. You declare
VSECTs within PSECTs.

Relocating Macro Assembler Program Sections | 4

CSECT initializes a base value for assigning sequential numeric
values to symbolic names. CSECTS are provided for convenience
only. Their use is optional.

The RMA maintains the following counters within each section:

Directive Counter
PSECT instruction location counter
VSECT initialized direct page counter

non-initialized direct page counter
initialized data location counter
non-initialized data location counter

Because the source statements within a certain program section cause
the linker to perform a function appropriate for the statement, the type
of mnemonic allowed within a section is sometimes restricted. How-
ever, the following mnemonics can appear inside Qr outside any
section: nam, opt, ttl, pag, spc, use, fail, rept, endr, ifeq, ifne, iflt, ifle,
ifge, ifgt, ifpl, endc, else, equ, set, macro, endm, and endsect.

4-3

Chapter 5

Program Section Directives

PSECT Directive

The PSECT directive specifies the beginning of a program code
section. You can specify only one PSECT for each assembly-language
file. The PSECT directive initializes all assembler location counters
and marks the start of the program segment. You must declare all
instruction statements and VSECT data reservations (RMB) within the
PSECT/ENDSECT block.

The syntax for the PSECT directive is:

PSECT name,typelang,attrrev,edition,stacksize,entry

If the program section is to be a mainline segment, you can specify the
name and five expressions as an operand list to PSECT. The RMA
stores the values of the operand list in the relocatable object file for
later use by the linker. If you omit the operand list, PSECT defaults to
the name Program and all expressions default to zero. The following
list describes the available expressions:

name Used by the linker to identify the PSECT. The name
can be up to 20 bytes long and can consist of any
printable characters, except the space and comma.
The name does not need to be unique; however, it is
often easier to identify PSECTs when their names are
distinct.

typelang Used by the linker as the executable module
type/language byte. If the PSECT is not a mainline
segment, typelang must be zero.

5-1

Relocating Macro Assembler Program Section Directives | 5

attrrev

edition

stacksize

entry

Used by the linker as the executable module
attribute/revision byte.

Used by the linker as the executable module edition
byte.

Used by the linker as the amount of stack storage
required by the PSECT. Specify stacksize as a word
expression. The linker adds the value in all PSECTs
that make up the executable module and adds the
total to any data storage requirement for the entire
program.

Used by the linker as the program entry point offset
for the PSECT. Specify entry as a word expression. If
the PSECT is not a mainline segment, this value must
be zero.

Statements that you can use in a PSECT are: any 6809 mnemonic, fcc,
fdb, fcs, fdb, rzb, vsect, endsect, 0s9, and end. Note that you cannot
use RMB in a PSECT.

Note: If you are familiar with the OS-9 Level I Interactive
Assembler, note the following difference between the RMA's
PSECT directive and the Interactive Assembler's MOD
statement. The MOD statement directly outputs an OS-9
module header, but PSECT only sets up information for the
linker. The linker creates the module header.

Example

* this program starts a basic09 process

ifp1
use/defs/os9defs.a
endc

PRGRM equ $10

OBJCT equ $1

5-2

Relocating Macro Assembler Program Section Directives | 5

stk equ 200
psect rmatest,$11,$81,0,stk,entry

name fcs /basic09/
prm fcb $d
prmsize *-prm

entry leax hame,pcr
leau prm,pcr
Idy #prmsize
Ida #PRGRM+OBJCT
clrb

os9 F$FORK
os9 FSWAIT
os9 FSEXIT
endsect

VSECT Directive

The VSECT directive indicates the variable storage section, which can
contain either initialized or non-initialized variable storage defini-
tions. The VSECT directive causes the RMA to change the data
location counters. The RMA offers two sets of counters for each
VSECT: one set for direct page variables and another for variables
that are normally index-register offsets into a process's data storage
area.

The syntax for a VSECT directive is:

VSECT [DP]

If you specify the DP operand, the RMA uses the direct page counters.
If you omit DP, the RMA uses the index register counters.

You can specify any number of VSECT blocks within a PSECT. Note,
however, that the data location counters maintain their values from
one VSECT to the next. Because the linker handles the actual data
allocation, there is no facility to adjust the data location counters.

Relocating Macro Assembler Program Section Directives | 5

Statements that you can use within a VSECT are: rmb, fcc, fdb, fcs,
fcb, rzb, and endsect. The fcc, fdb, fcb, fcs, and rzb directives place
data into the initialized data area. Programs move initialized constants
which appear inside a VSECT from the data section to the program
section for accessing by the 6809 program counter relative addressing
mode. Initialized constants can appear outside of a VSECT; however,
if they do, the program cannot change them.

Example

ifp1
use/defs/os9defs.a
endc

PRGRM EQU $10
OBJCT EQU $1
stk EQU 200
PSECT pgmilen,$11,$81,0,stk,start

* data storage declarations
VSECT

temp RMB 1

addr RMB 2

buffer RMB 500

ENDSECT
start leax buffer,u get address of buffer
clr temp
inc temp
Idd #500 loop count
loop clr X+
subd #1
bne loop
0s9 F$EXIT return to OS9
ENDSECT

Relocating Macro Assembler Program Section Directives | 5

CSECT Directive

The CSECT directive provides a method for assigning consecutive
offsets to labels without resorting to EQUs.

The syntax for the CSECT directive is:

CSECT expression

If you specify an expression, the RMA sets the CSECT base counter to
the specified value. If you do not include an expression, the RMA uses
a base counter value of zero.

Example

* This CSECT assigns offsets of 0, 1, and 2 respectively.

CSECT O
R$CC RMB1 Condition code register
R$A RMB 1 A accumulator
R$B RMB 1 B accumulator
ENDSECT

See the Defs file that is included in the OS9 Development diskette for
more CSECT examples.

5-5

Chapter 6

Assembler Directive Statements

Directive statements give the assembler information that affects the
assembly process, but they do not generate code. Read the descrip-
tions in this chapter carefully. Some directives require labels, some
allow optional labels, and a few cannot have labels.

END Statement

The END statement indicates the end of a program. The syntax for
END is:

END
You cannot use a label with the END statement.

Because the RMA assumes the end of file when it encounters an end-
of-file condition on the source file, the END statement is optional.

EQU and SET Statements

The EQU and SET statements let you assign a value to a symbolic
name (label). The syntaxes for these statements are:

label EQU expression
label SET expression

The label is required. You can specify expression as an expression, a
name, or a constant.

6-1

Relocating Macro Assembler Assembler Directive Statements | 6

EQU lets you define symbols only once in the program. Usually, you
use EQU to define program symbolic constants, especially those used
with instructions. It is a standard programming practice to place all
EQUs at the beginning of the program.

When using EQU, the /abel must be unique, and you must define the
expression if you specify a name.

SET lets you redefine a symbol as many times as you want. Usually,
you use SET to define symbols used to control the assembler opera-
tions, such as conditional assembly and listing control.

Example
FIVE EQU 5
OFFSET EQU address-base
TRUE EQU $FF
FALSE EQU 0

SUBSET SET TRUE

ifne SUBSET

use subset.defs
else
use full.defs
endc
SUBSET set FALSE
FAIL Statement

The FAIL statement forces the RMA to report an assembler error.
Generally, you use FAIL with conditional assembly directives that test
for various illegal conditions. The syntax for the FAIL statement is:

FAIL textstring

The RMA displays the textstring operand in the same manner as
normal RMA-generated error messages. Because the RMA assumes
the entire line after the FAIL keyword to be the error message, you
cannot specify a comment field.

6-2

Relocating Macro Assembler Assembler Directive Statements | 6

Example
ifeq maxval
FAIL maxval cannot be zero
endc

IF, ELSE, and ENDC Statements

The IF, ELSE, and ENDC statements let you selectively assemble (or
not assemble) one or more parts of a program, depending on the value
of a variable or computed value. The syntaxes for these statements
are:

IFxx expression
statements
ELSE
statements
ENDC

When the RMA processes an IF statement, it makes the desired
comparison. If the comparison result is true, the RMA processes the
statements following the IF statement until it finds an ENDC or ELSE.

The ELSE statement is optional. If the RMA encounters an ELSE
statement, it processes the statements following the ELSE if the result
of the comparison is false.

The ENDC statement marks the end of a conditional program section.

There are several available IF statements:

IFEQ True if operand equals zero

IFNE True if operand does not equal zero

IFLT True if operand is less than zero

IFLE True if operand is less than or equal to zero

IFGT True if operand is greater than zero

IFGE True if operand is greater than or equal to zero

IFP1 True only during the assembler's first pass (no operand)

Relocating Macro Assembler Assembler Directive Statements |/ 6

Examples
In the following example, IFEQ tests if the operand is equal to zero:

IFEQ SWITCH

Idd #0 assembled only if SWITCH=0
leax 1,x
ENDC

The following example adds the ELSE condition to the preceding
program:

IFEQ SWITCH

idd #0 assembiled only if SWITCH=0

leax 1,x

ELSE

ldd #1 assembled only if SWITCH does not equal 0
leax -1,x

ENDC

You can use IF statements to test the result of a arithmetic evaluation
as an operand. This example tests to see if the result of the subtraction
of MIN from MAX is less than or equal to zero:

IFLE MAX-MIN

The IFP1 statement tells the RMA to process subsequent statements
during the first pass only. You can use this for program sections that
contain only symbolic definitions to be processed only once during
the assembly. Because they do not generate actual object code output,
the symbolic definitions are processed during Pass 1 only. The
OS9Defs file is an example of a large section of such definitions. For
example, you can use the following statements at the beginning of
many source files:

IFP1
use /do/defs/OS9Defs
ENDC

Relocating Macro Assembler Assembler Directive Statements | 6

NAM and TTL Statements

The NAM and TTL statements let you define or redefine a program
name or listing title line, respectively. The RMA prints this
information on each listing page header.
The syntaxes for NAM and TTL are:

NAM string

TTL string

You cannot specify a label with these statements.

The RMA prints the program name, set by NAM, on the left side of the
second line of each listing page. The RMA then prints a dash, and the
title line, set by TTL. You can change the program name and listing
title as often as you like.

Example

NAM Datac
TTL Data Acquisition System

This example prints the following information in the listing header:

Datac - Data Acquisition System

OPT Statement

The OPT statement lets you set or reset any of several assembler
control options. The syntax is:

OPT option
The operand option can be any of the assembler options described in
Chapter 1 of this manual. It consists of one character, except for the d

and w options, which require a number. Do not specify - or -- in the
OPT statement.

You cannot use the label or comment fields with the OPT statement.

6-5

Relocating Macro Assembler Assembler Directive Statements | 6

Examples

The following statement suppresses the listing generation:

OPT |

The next example sets the line width to 72 charac ors:
OPT w72

PAG and SPC Statements

The PAG and SPC statements let you improve the readability of a
program listing by starting a new page or inserting blank lines. The
syntaxes for the statements are:

PAG
SPC expression

The PAG and SPC statements cannot have a label field.

The PAG statement causes the RMA to begin a new page in the listing.
For Motorola compatability you can also use the alternate form,
PAGE.

The SPC statements inserts blank lines in the listing. The operand
expression specifies the number of blank lines to be inserted. The
expression can be an expression, constant, or name. If you

omit the expression, the RMA inserts one blank line.

REPT and ENDR Statement

REPT and ENDR let you repeat the assembly of a sequence of
instructions a specified number of times. The syntaxes are:

REPT expression
statements
ENDR

6-6

Relocating Macro Assembler Assembler Directive Statements | 6

The operand expression specifies the number of times the assembly
is to be repeated. The expression cannot include EXTERNAL or
undefined symbols. You cannot nest REPT loops.

Example

* make module size exactly 2048 bytes
REPT 2048-*-3 compute fill size w/crc space
fcb 0
ENDR
emod

* 20-cycle delay
REPT 5
nop
nop
ENDR

RMB Statement

The RMB statement has two uses. When used within a VSECT, RMB
declares storage for non-initialized variables in the data area. When
used within a CSECT, RMB assigns a sequential value to the symbolic
name given as its label. The syntax for RMB is:

label RMB expression

When using RMB in a VSECT, specify a label that is assigned the
relative address of the variable. In OS-9, the address must not be
absolute and you should usually use indexed or direct page
addressing modes to access variables. The linker assigns the actual
relative address when processing the relocatable object file. It adds
the operand, expression to the address counter to update them.

When using RMB in a CSECT, specify a label to which you assign the
value of the current CSECT location counter. Doing this, then updates
the counter by causing the program to add the result of the expression
given.

6-7

Relocating Macro Assembler Assembler Directive Statements | 6

USE Statement

The USE statement causes the RMA to temporarily stop reading the
current input file. USE requests that OS-9 open and read input from
the specified file/device until an end-of-file occurs. OS-9 then closes
the new input file, and the RMA resumes processing at the statement
following the USE statement. The syntax is:

USE pathlist

The pathlist specifies the new input file or device. You cannot specify
a label with the USE statement.

You can nest as many USE statements as you can have open files at
one time (usually 13, not including the standard I/O paths).
Example

To accept interactive input from the keyboard during the assembly of
a disk file, use the following statement:

USE /term

6-8

Chapter 7

Pseudo-Instructions

Pseudo-instructions are special assembler statements that generate
object code, but do not correspond to actual 6809 machine
instructions. Their primary purpose is to create special sequences of
data to be included in the program. Labels are optional on pseudo-
instructions.

FCB and FDB Statements

The FCB and FDB pseudo-instructions generate sequences of
constants within the program. The syntaxes for these pseudo-
instructions are:

FCB expression, [expression,...]
FDB expression, [expression,...]

Expression can be any legal expression. You can specify more than
one expression by separating them with commas.

FCB generates a sequence of single constants in the program. It
reports an error if an expression has a value that is greater than 255 or
less than -128.

FDB generates a sequence of double constants in the program. If FDB
evaluates an expression with an absolute value of less than 256, the
high-order byte is zero.

If FCB or FDB appears within a VSECT, the RMA assigns the data to
the appropriate initialized data area (DP or non-DP). Otherwise, the
RMA places the constant in the code area. If the constant contains an
EXTERNAL reference, the program, using Root.a, must copy out and
adjust the references.

7-1

Relocating Macro Assembler Pseudo-Instructions | 7

Examples

FCB 1,20,'A
FCB index/2+1,0,0,1

FDB 1,10,100,1000,10000
FDB $F900,$FA00,$FB00,$FCO0

FCC and FCS Statements

The FCC and FCS pseudo-instructions generate a series of bytes
corresponding to the specified character string. The syntaxes are:

FCC string
FCS string

FCS is the same as FCC except that the most significant bit (the sign
bit) of the last character in the string is set. This is a common OS-9
programming technique to indicate the end of a text string without
using additional storage.

String must be enclosed in delimiters. You can use the following char-
acters as delimiters:

1"#8%&()*+,-./

The beginning and ending delimiters must be the same character. The
delimiting character cannot appear in the character string.

FCC and FCS output bytes that are the literal numeric representation
of each ASCII character in the character string.

If FCC or FCS appear in a VSECT, the RMA assigns the data to the
appropriate initialized data area (DP or non-DP). Otherwise, the RMA
places the constant in the code area.

7-2

Relocating Macro Assembler Pseudo-Instructions | 7

Examples

FCC /this is the character string/
FCS ,01234567899,

FCS AA null string

FCC z

FCs " null string

RZB Statement

The RZB pseudo-instruction fills memory with a sequence of bytes,
each of which has a value of zero. The syntax is:

RZB expression

The expression is a 16-bit expression. The RMA evaluates the
expression and places that number of zero bytes in the appropriate
code or data section.

0OS9 Statement

The OS9 pseudo-instruction is a convenient way to generate OS-9
system calls. The syntax is:

0S9 expression

The RMA uses the expression value as the request code. The fol-
lowing instruction sequence is the equivalent to the OS9 pseudo-
instruction:

Swi2
FCB operand

The OS9Defs file contains the standard definitions of the symbolic
names of all the OS-9 service requests. You can use these names with
the OS9 pseudo-instruction to improve the readability and portability
of assembly-language software.

7-3

Relocating Macro Assembler Pseudo-Instructions | 7

Examples

0Ss9 I$READ call 0S-9 READ service request

0S9 FSEXIT call 0S-9 EXIT service request

7-4

Chapter 8

Accessing the Data Area

In general, the RMA assumes that the program will access data using
indexed or direct page addressing modes. By convention, one index
register contains the starting address of the data area, and the direct
page register contains the page number of the lowest-address page of
the data area. The RMA/RLINK system automatically adjust operands
of instructions, using indexed and direct page addressing modes.

The RMA accesses the data area differently depending on whether or
not your program uses initialized data. Initialized data is data that has
an initial value that is modified by the program. You create initialized
data with the FCB, FDB, FCC and similar directives used in a VSECT.

If you do not use initialized data, the RMA accesses program data
using index registers--this is the method used by the OS-9 Level I
Interactive Assembler.

Using Non-Initialized Data

Programs that do not used initialized data declare all data storage in
VSECTs using RMBs. The following diagram shows how the RMA
sets up the data memory area and registers for a new process:

<— Y (highest address)
< X, SP

parameter area

data area

direct page

<— U, DP (lowest address)

8-1

Relocating Macro Assembler Accessing the Data Area / 8

When OS-9 executes a process, the MPU Registers contain the bounds
of the data area. Register U contains the beginning address and
Register Y contains the ending address. OS-9 sets the SP register to
the ending address + 1, unless you use a parameter. The direct page
register contains the page number of the beginning page. If you used
no parameters, Y, X, and SP are the same value. The OS-9 Shell always
passes at least an end-of-line character in the parameter area.

If Register U is maintained throughout the program, you can use
constant-offset-indexed addressing.

You can write part of the program's initialization routine to compute
the actual addresses of the data structure and store these addresses in
pointer locations in the direct page. Then, obtain the addresses later
using direct-page addressing mode instructions.

Note: Because the memory addresses assigned to the
program section and the address section are not a fixed
distance apart, you cannot use program-counter relative
addressing to obtain the address of objects in the data section.

Using Initialized Data

If you plan to use initialized data, you need to copy the data from the
initialized data section in the object module to the data storage area
pointed to by the Register U. Do so by using the Root.a mainline
module (object code that is directly executable by using the OS-9
F$FORK). The function of the Root.a mainline module is to use the
initializing values and offsets of the initialized data location, stored in
the object code module, to actually initialize variables. The linker
automatically generates the initialization information area of the
object code module based on information passed by the RMA in the
relocatable object file.

Root.a sets Register Y to point to the same location to which Register
U pointed. Register X points to the parameter area, and Register U
points to the top of data allocated by the linker. The data-index

8-2

Relocating Macro Assembler Accessing the Data Area ! §

register choice is arbitrary, but use your choice consistently. To
maintain compatibility with code produced by the C compiler,
Register Y is used as the data pointer. For more information on Root.a,
study the commented source code supplied on the distribution
diskette. The following diagram shows how the RMA sets up the data
area:

Process Data Area Layout

arameters
P X
stack < SP Register
free memory
o
requested memory U
uninitialized data
initialized data
unitialized direct page
initialized direct page
- P28® l4—v,pp

Process Object Code
Module Layout

CRC Check Bytes

Initializing Data Offsets

<— Used by Root.a
Initializing Data Values
Additional (user)
Executable PSETS
Mainline PSET _
(Root.a)
Standard OS-9
Module Header

<}— PC (this area)

<} Program entry point

8-3

Chapter 9

Using the Linker

The Relocating Macro Assembler lets you write and assemble
programs separately and then link them to form a single object code
0S-9 module. The linker, RLINK, combines relocatable object files
(ROF) into a single OS-9 format memory module. It also resolves
external data and program references. Because RLINK allows
references to occur between modules, you can write one program that
references a symbol in another program.

If the RMA encounters an external reference during the assembly
process, it sets up information denoting the existence of an internal
reference. The RMA does not know the location of the external
reference.

Because the RMA is a relocatable assembler, it produces relocatable
object files that do not have absolute addresses assigned. The RMA
assembles each section with the absolute address 0.

RLINK reads in all the relocatable object files and assigns each an
absolute memory address for data locations and instruction locations
for branching. OS-9 resolves any other addresses at execution time.

By using the RMA and RLINK, you can write programs in smaller
sections that are easier to read and debug. In this way, if an error
occurs, you need edit and reassemble only the module in which the
error occurred. Then, you can relink the fixed module with the rest of
the program.

9-1

Relocating Macro Assembler Using the Linker / 9

Running the Linker

You call the linker, RLINK, with the following command line:

RLINK [options] mainline [sub1....subn] [options]
All input files must be in relocatable object format (ROF).

Mainline specifies the pathlist of the mainline (first) segment from
which RLINK resolves external references and generates a module
header. It is the object of the mainline file to perform the initialization
of data and the relocation of any initialized data references within the
initialized data, using the information in the object module supplied
by RLINK (See Chapter 7.) You indicate that a program is the
mainline module by setting the rype/lang value in the PSECT directive
to a non-zero value.

The subl and subn options represent any additional modules to be
linked to the mainline module. The additional ROFs cannot contain a
mainline PSECT notation (type/lang>0).

RLINK includes the mainline file and all sub-modules in the final
linked object module, even if you did not reference the subroutine.

Available Options

You can use any of the following options on the RLINK command
line:

-o=path Writes the linker object (memory module) output to
the file specified by the pathlist. RLINK assumes the
last element in the pathlist to be the module name
unless you use the -n option.

-n=name Specifies name as the object file.

9-2

Relocating Macro Assembler Using the Linker | 9

-l=path

-E=n

-M=size

-m

Specifies path as the library. A library file consists of
one or more merged assembly ROFs. The assembler
checks each PSECT in the file to see if it resolves any
unresolved references. If so, RLINK includes the
module in the final output module. Otherwise, RLINK
skips the file. RLINK searches library files in the
order in which you specify them on the command
line. A library file cannot contain a mainline PSECT.

Sets the edition number in the final output module to
n. You can also use -e (lowercase).

Sets the number of pages of additional memory for
C.LINK to allocate to the data area of the final object
module. If you omit this option, C.LINK adds up the
total data stack requirements found in the PSECT of
the input modules, and uses that value.

Prints the linkage map that indicates base addresses
of the PSECTs in the final object module.

Prints the final addresses that RLINK assigned to
symbols in the final object module.

Links C-language functions so that they can be called
from BASICQ09. The argument epr specifies the name
of the function to which control is transferred when
BASIC09 executes a RUN command.

Allows static data to appear in a BASICQ9 callable
module. RLINK assumes that the C function being
called and the calling BASICO9 program provide a
sufficiently large static storage data area pointed to
by Register Y.

9-3

Chapter 10

Error Messages

When the RMA detects an error during assembly, it prints an error
message in the listing just before the source line containing the error.
In some cases, the RMA might report more than one error for a source
line. If you do not use the -1 option to produce the listing, the RMA
still prints the error messages and the problem source line. At the end
of the listing, the RMA reports the total number of errors and warnings
in the assembly summary statistics.

The RMA prints all error messages, the associated source line, and the
assembly summary to the assembler's error path. You can redirect this
output using the shell redirection symbol. For example:

RMA sourcefile -o=sourcetfile >>src.error

During the initial stages of assembly, you might find it useful to
suppress generation of both the listing and object code (by omitting
the -1 and -o options). Doing this lets the RMA perform a quick
assembly just to check for errors. In this way, you can find and correct
many errors before printing a lengthy listing.

Some errors stop execution on a line. In these cases, the RMA might
not detect all errors that occur on one line; so, make changes
carefully.

The following list shows the RMA error messages and a description
for each message.

Bad label

The label field contains an incorrectly formed label.

10-1

Relocating Macro Assembler Error Messages | 10

Bad Mnemonic

The mnemonic field contains a mnemonic that the RMA does not
recognize or a mnemonic that is not allowed in the current program
section.

Bad number

The numeric constant definition contains a character that is not
allowed in the current radix.

Bad operand

The operand field is missing an expression or contains an incorrectly
formed operand expression.

Bad operator

The operator contains an incorrectly formed arithmetic expression.

Bad option

An option is not recognized or is incorrectly specified.

Bracket Missing

A bracket is missing from an expression.

Can't open file

The RMA encountered a problem when opening an input file.

Can't open macro work file

The RMA cannot open a macro work file.

10-2

Relocating Macro Assembler Error Messages ! 10

Comma expected

The RMA cannot find an expected comma.

Conditional nesting error

Program contains mismatched IF and ELSE/ENDC conditional
assembly directives.

Constant definition

The statement contains an incorrectly formed constant definition.

DP section???

Direct Page assignments have exceeded 256 bytes.

ENDM without MACRO

The RMA encountered an ENDM statement without a matching
MACRO statement.

ENDR without REPT

The RMA encountered an ENDR statement without a matching REPT
statement.

Fail message

The RMA encountered a FAIL directive.

File close error

An error occurred closing a file.

Illegal addressing mode

The specified addressing mode cannot be used with the instruction.

10-3

Relocating Macro Assembler Error Messages ! 10

Illegal external reference

You cannot use external names with assembler directives. If an
operand expression contains an external name, the RMA can only
perform binary plus and minus operations.

Illegal index register

You cannot use the specified register as an index register.

Label missing

The statement is missing a required label.

Macro arg too long

More than 60 characters (total) were passed to the macro.

Macro file error
The RMA experienced problems when trying to access the macro
work file.

Macro nesting too deep

You can nest macros up to eight levels deep.

Nested MACRO definitions

You cannot define a macro within another macro definition.

Nested REPT

You cannot nest repeat blocks.

10-4

Relocating Macro Assembler Error Messages | 10

New symbol in pass two

This indicates an assembler symbol lookup error. This error can be
caused by a symbol table overflow or bad memory.

No input files

You must specify an input file.

No param for arg

A macro expansion is attempting to access an argument that was not
passed by the macro call.

Phasing error

A label has a different value during Pass 2 than it did during Pass 1.

Redefined name

The name appears more than once in the label field (other than on a
SET directive).

Register list error

The legal register names allowed in tfr, exg, and pul are: A, B, CC, DP,
X,Y,U,S, and PC.

Register size mismatch

The registers specified in the tfr and exg instructions must be the same
size.

Symbol lost?

This indicates an assembler symbol lookup error. This error can be
caused by a symbol table overflow or bad memory.

10-5

Relocating Macro Assembler Error Messages | 10

Too many args

You can pass up to nine arguments to a macro.

Too many object files

You can specify the -o option to the RMA only once on the command
line.

Too many input files

You can specify a maximum of 32 input files.

Undefined org

The * (program counter org) cannot be accessed within a VSECT.

Unmatched quotes

A quotation mark is missing.

Value out of range

A byte expression value is less than -128 or greater than 255.

10-6

Chapter 11

Examples

The chapter contains two assembly language programming examples:
e LSIT, to list files

e UpDn, to convert input case to either upper or lower

e sk ok e s ok e e

* LSIT UTILITY COMMAND

* A "LIST" Command for poor typists

* Syntax: Isit <path>

* Lsit copies input from path to standard output
* NOTE: This command is similar to the

* LIST command. Its name was changed

* to allow easy assembly and testing

* since LIST normally is already in memory.

PRGRM equ $10
OBJCT equ $01
STK equ 200
csect
IPATH rmb 1 input path number
PRMPTR rmb 2 parameter pointer
BUFSIZ rmb 200 size of input buffer
endsect

psect list, PRGRM+OBJCT,$81,0,STK,LSTENT

BUFFER equ 200 allocate line buffer
READ. equ 1 file access mode

11-1

Relocating Macro Assembler

Examples | 11

LSTENT stx PRMPTR
Ida #READ.
os9 [$Open
bes LSITS50
sta IPATH
stx PRMPTR

LSIT20 Ida IPATH
leax BUFFER,u
Idy #BUFSIZ
0s9 ISReadLn
bes LSIT30
Ida #
0s9 I$WritLn
bee LSIT20
bra LSITS50

LSIT30 cmpb #E$SEOF
bne LSIT50
Ida IPATH
os9 I$Close
bes LSITS50
1dx PRMPTR
Ida 0,x
cmpa #$0D
bne LSTENT
cirb

LSIT50 os9 F$Exit
endsect

save parameter ptr
select read access mode
open input file

exit if error

save input path humber
save updated param ptr

load input path nhumber
load buffer pointer

max bytes to read

read line of input

exit if error

load st. out path #
output line

repeat if no error

exit if error

at end of file?

branch if not

load input path number
close input path

..exit if error

restore param ptr

end of param line?
..no; list next file

.terminate

11-2

Relocating Macro Assembler Examples | 11

* This is a program to convert characters from lower to

* upper case (by using the u option), and upper to lower
* (by using no option). To use type:

* updn u (for lower to upper) < input > output

nam updn

opt 1
ttl ASSEMBLY LANGUAGE EXAMPLE
PRGRM equ $10
OBJCT equ $01
stk equ 250
psect updn,PRGRM+OBJCT,$81,0,stk,entry
vsect
temp mb 1
uprbnd rmb 1
lwrbnd rmb 1
endsect
entry Ida X4 search parameter area
anda #$df make upper case
cmpa #U see if a U was input
beq upper branch to set uppercase
cmpa #$0D carriage return?
bne entry no; go get another char
Ida #A get lower bound
sta Iwrbnd set it in storage area
Ida #Z get upper bound
sta uprbnd set it in storage area
bra start1 go to start of code
upper Ida #a get lower bound
sta Iwrbnd set it in storage
Ida #2 get upper bound
sta uprbnd set it in storage
start1 leax temp,u get storage address
Ida #0 standard input
Idy #301 number of characters

11-3

Relocating Macro Assembler

Examples | 11

loop os9 ISRead
becs exit
Idb temp
cmpb Iwrbnd

blo write
cmpb uprbnd

bhi write
eorb #$20
write stb temp

inca reg'a’
0s9 I$WritLn

deca
bce loop
exit cmpb #ESEOF
bne exit1
cirb
exit1 os9 F$EXxit
endsect
cirb

do the read

exit if error

get character read
test char bound
branch if out

test char bound
branch if out

flip case bit

put it in storage
standard out

write the character
return to standard in
get char if no error
is it an EOF error
not eof, leave carry
clear carry, no error
error returned, exit

11-4

Appendix A

6809 Instructions
and Addressing Modes

Direct

Extended Index

Immed Accum

Inher Relat

Regis

ABX
ADCA
ADCB
ADDA
ADDB
ADDD
ANDA
ANDB
ANDCC
ASL
ASLA
ASLB
ASR
ASRA
ASRB
(L)BCC
(L)BCS
(L)BEQ
(L)BGE
(L)BGT
(L)BGI
(L)BHS
BITA
BITB

T e e e i

ETE e i S e SIS

>

T e e e

>

Rl e e e

>

X

>

el

R R R KX

A-1

Relocating Macro Assembler 6809 Instructions | A

Direct Extended Index Immed Accum Inher Relat Regis

(L)BLE
(L)BLO
(L)BLS
(L)BLT
(L)BMI
(L)BNE
(L)BPL
(L)BRA
(L)BRN
(L)BSR
(L)BVC
(L)BVS
CLR
CMPA
CMPB
CMPD
CMPS
CMPU
CMPX
CMPY
COM
CWAI
DAA
DEC
EORA
EORB
EXG
INC

IR e e e e e

P4 XK K K KX
e e e R e R e e R he
e e R e R o e R e R

KX X R IR XN

S

%

~
P i i i Sl
e T e i I e
PR A AT MK KR X

> KK

A-2

Relocating Macro Assembler 6809 Instructions | A

Direct Extended Index Immed Accum Inher Relat Regis

LDX X X
LDY X X
LEAS
LEAU
LEAX
LEAY
LSL

LSR

X
X

> X

NOP
ORA
ORB
ORCC
PSHS
PSHU
PULS
PULU
ROL
ROR
RTI
RTS
SBCA
SBCB
SEX
STA
STB
STS
STU
STX
STY
SUB
SUBA
SUBB
SWI X

2
>~ MK X XX
> bl o T
PP e i e e e T e e > T o T S i S S i
i > <
>~
>
el

Pl T I i e I e
MK XK XX XX

el el

A-3

Relocating Macro Assembler 6809 Instructions | A

Direct Extended Index Immed Accum Inher Relat Regis

SWI2
SWI3
SYNC

el le

TST X X X X

A-4

Relocating Macro Assembler

Index

! (logical OR) 2-7

& (logical AND) 2-7

* (comment) 2-2

* (multiplication) 2-7

+ (addition) 2-7

- (negative) 2-7

- (subtraction) 2-7

-x option (expand macro listings) 3-2
\ (division) 2-7

\ (macro argument) 3-3 - 3-5
\# (macro argument) 3-4

\@ (macro labels) 3-5 - 3-6
\LL (macro argument) 3-4

* (logical NOT) 2-7

additional memory, setting 9-3

arguments, macros 3-3 - 3-5

assembling programs 6-3 - 6-4

assembler control options 6-5 - 6-6
assembler error reporting 6-2 - 6-3

assembly location counters 5-1
assembly-language programs, developing 2-1
attribute/revision byte 5-2

base counter, CSECT 5-5
binary numbers 2-6
blank lines 2-2

body, macro 3-2-3-3

Relocating Macro Assembler Index

C compiler, compatibility 8-3
C-language functions, linking 9-3
cgfx.1 file 2-10

character
constants 2-6
string 7-2-7-3

code bytes, listing 1-3
colon (global name) 2-3
comment field 2-2, 2-4
comments 2-2
comparison statement 6-3 - 6-4
conditional assembly lines, suppressing 1-3
consecutive offsets to labels 5-5
constants

character 2-6

generating 7-1-7-2
counter, instruction 2-6
CSECT 4-2-4-3,5-5, 6-7

data

area 8-2

location counters 5-3

storage 8-1-8-2
data, initialized 8-2 - 8-3
decimal numbers 2-5
defined symbols 2-9
DEEFS directory 2-9-2-10
Defs file 5-5
device or file, opening 6-8
direct page

addressing 8-2

register 8-2

variable 5-3

Relocating Macro Assembler Index

directives

CSECT 5-5

ENDSECT 4-2

FAIL 3-5

VSECT 5-3-5-4
directive statements 6-1 - 6-8
directory

DEFS 2-9 -2-10

LIB 2-10
division functions 2-7
double constants 7-1 - 7-2

edition number option 9-3
ELSE statement 6-3 - 6-4
END statement 6-1
ENDC statement 6-3 - 6-4
ENDR statement 6-6 - 6-7
ENDSECT 4-2, 5-1
entry point offset 5-2
EQU statement 6-1 - 6-2
error, assembler 6-2 - 6-3
error messages, suppressing 1-3
executable module edition byte 5-2
expanding macro listings 3-2
expression evaluation 2-4 - 2-8
external
data references 9-1 -9-3
names 4-1
program references 9-1 - 9-3
EXTERNAL reference 7-1

FAIL

directive 3-5

statement 6-2 - 6-3
FCB statement 7-1 - 7-2, 8-1
FCC statement 7-2 - 7-3, 8-1
FCS statement 7-2 - 7-3

Relocating Macro Assembler Index

FDB statement 7-1 - 7-2, 8-1
features 1-1

field 2-2

file or device, opening 6-8
files to copy 1-2

filling memory 7-3

final address, printing 9-3
format of assembly listings 2-4

global names 2-3

header, macro 3-2
hexadecimal numbers 2-6

IF statement 6-3 - 6-4
IFEQ 6-3 - 6-4
IFGE 6-3 - 6-4
IFGT 6-3 - 6-4
IFLE 6-3 - 6-4
IFLT 6-3 - 6-4
IFNE 6-3 - 6-4
IFP1 6-3 - 6-4
illegal symbolic names 2-8
index-register offsets 5-3, 8-1
initialized data §8-1 - 8-3
input file, reading 6-8
instruction counter 2-6
instructions

repeating 3-1-3-7, 6-6 - 6-7
integers 2-5

keyboard input 6-8

label field 2-2

labels (macro) 3-5 - 3-6
LIB directory 2-8, 2-10
library path, specifying 9-3

Relocating Macro Assembler Index

line

fields 2-2

maximum length 2-2
lines-per-page, setting 1-3
linking C-language functions 9-3
linkage map, printing 9-3
linker, starting 9-2
linker output 9-2
linking programs 9-1 - 9-3
listing

blank lines 6-6

code bytes 1-3

page 6-6

macro
arguments 3-3 - 3-5
body 3-2-3-3
expansion, suppressing 1-3
header 3-2
labels 3-5-3-6
terminator 3-2
MACRO directive 3-1
macros, documenting 3-7
memory, filling 7-3
MOQOD statement 5-2
multiplication functions 2-7

NAM statement 6-5
name, defining 6-5

PSECT 5-1

symbolic 2-6, 2-7 - 2-10
nesting macros 3-3
non-initialized data 8-1 - 8-2
null argument (macro) 3-4

Relocating Macro Assembler Index

numbers
binary 2-6
decimal 2-5
hexadecimal 2-6
numeric expressions 2-4

opening files or devices 6-8
operand 2-4
Operand field 2-2,2-3 - 2-4
operands, expression 2-5-2-6
operation field 2-2, 2-3
operator 2-4
precedence 2-7
OPT statement 1-3, 6-5 - 6-6
options
assembler 1-3, 6-5 - 6-6
RLINK 9-2-9-3
0S9 statement 7-3 - 7-4
output, linker 9-2

PAG statement 6-6

page, starting new 6-6

page number §-2

pointer locations 8-2

precedence of operators 2-7

printing the symbol table 1-3

printer, top-of-form 1-3

program segment 5-1

program statements 4-1

programs, assembling 6-3 - 6-4

PSECT 4-1-4-3,5-1-5-3,9-3
statements 5-2

reading input files 6-8

register name 2-3

relocatable object file 2-1, 4-1, 9-1
repeating instructions 6-6 - 6-7

Relocating Macro Assembler

Index

REPT statement 6-6 - 6-7
RLINK 2-8,4-1,9-1-9-3
options 9-2-9-3
output 9-2
starting 9-2
RMB statement 6-7
Root.a mainline module 8-2
RZB statement 7-3

segments 4-1
setting lines-per-page 1-3
SET statement 6-1 - 6-2
single constants 7-1-7-2
source file 2-2
SPC statement 6-6
specifying

library path 9-3

name, RLINK 9-2
stack storage 5-2
starting

RLINK 9-2

RMA 1-2
statements

ELSE 6-3 - 6-4

END 6-1

ENDC 6-3 - 6-4

ENDR 6-6 - 6-7

EQU 6-1-6-2

FAIL 6-2-6-3

FCB 7-1-7-2

FCC 7-2-7-3

FCS 7-2-73

FDB 7-1-7-2

IF 6-3-6-4

NAM 6-5

OPT 6-5-6-6

0S9 7-3-74

Relocating Macro Assembler

Index

PAG 6-6

REPT 6-6 - 6-7

RMB 6-7

RZB 7-3

SET 6-1-6-2

SPC 6-6

TTL 6-5

USE 6-8
statements

directive 6-1 - 6-8

PSECT 5-2

VSECT 5-4
static

data 9-3

storage area 9-3
storage, declare 6-7
storage file s 1-3
string, character 7-2 - 7-3
structure, macro 3-2 - 3-3
suppressing

conditional lines 1-3

error messages 1-3

macro expansions 1-3
symbol table 2-1

printing 1-3

symbolic name 2-2 - 2-3, 2-6, 2-7 - 2-8, 6-1
assigning a sequential value 6-7

symbols
defining 2-9, 6-2
redefining 6-2

Sys.1 file 2-10

system calls
symbolic names 2-8 - 2-10
generating 7-3 - 7-4

Relocating Macro Assembler Index

terminator, macro 3-2
text string 7-2 - 7-3
title line 6-5
top-of-form signal 1-3
TTL statement 6-5
type/language byte S-1

USE statement 6-8

variable storage
definitions 4-1
section 5-3 - 5-4
VSECT 4-1-4-3,5-1,6-7,7-1-17-2, 8-1
directive 5-3 - 5-4
statements 5-4

writing
assembler listing 1-3
output 1-3

Utilities

Contents

Chapter 1 / INroQUCHIONc.eeveeviereieriireece e ereceeeetestesesssenesassee s s evens 1-1
Chapter 2 / Make ULILItY ...coovvviriinniiivinivc e 2-1
USING MAKEcovivieteieieniercanieeeeinnanteieesressssseseesbeteseassessessessessnasanss 2-1
EXAIMPIES ...cerovereeiiiecnecerieceenienineeestneee e sestseeneessseseosenseaens 23

What is a MaKefile?cccouvveeineiirerninreienreienieceeree e eresensenneaeseons 2-3
Built-in Rules and Definitionsc.cccceceneereveenevenieneenienne. 2-4

MACTOS ..cviniiereerctcieeteteecrte ettt cone e ee e e sae e s ne 2-5

SPeCial MACTOSoceoveiererereeinneeeneeeeeeeneneeenesessessesneesenes 2-6
RESEIved MACTOS ...ocvoeuieeeereecereeesinrcenierieereserecneseeseseesenennens 2-7
COMIMANGSovvoverriereeeeiorenrrrerireeseesssessessesesessesesessesessessssssosensas 2-7
COMIUTIENLSvveveereerreneeteesrereeterereeesssseesseeresseseosessseeseossssseonsosssans 2-8

LONE LINES .vvvcvieireiiieencinieertrtrciererereseecrosesisastacsrenesesesesessone 2-8

HOW Make WOTKS ..ooviirieieiieirenres ettt cer e nese e sestsseeesens 2-8
Notes about MaKecoceveevieniiiieiineninccnniesrcseee et e e 2-9
Examples of Makefiles ... 2-10
EXAMPIE 1 ..ottt s saeieere et see s 2-10
EXAMPIE 2 ...t cirveiercereeereerereeien e st ereeeeeseesee e saenanne 2-11
EXampPIE 3 ...ttt e e e s nees 2-11
EXAMPIE 4 ...cvoviiieiiiiiirieceereeerenreiee e s 2-12
EXAMPIE 5 ..ottt e e e ee s 2-13
Chapter 3 / Touch ULLEY ..covvverieiiiiiicerircnriiiisiesie i 3-1
EXAIIPIES ..voiveieinieeeieteenercei ettt esre e seesasn e sasnsenns 3-2
Chapter 4 / Virtual Disk/RAM Disk DIiverc.coccoveciiiiniiininiennene. 4-1

Initalizing VDDcocoiiiicirceeece e 4-1

Chapter 1

Introduction

The OS-9 Level Two Development Pack includes three utilities:

Make: Helps maintain the current version of software by keeping
track of modifications to program source to determine the need
for recompiling, reassembling, or relinking files.

Touch: Updates the modification date of specified files.

Virtual Disk Driver/RAM Disk Driver: Creates a high-speed
storage system in your computer's RAM that simulates a disk
drive.

1-1

Chapter 2

Make Utility

The Make utility helps maintain the current version of software. It
uses built-in knowledge of OS-9 compilers, file types, and file naming
conventions to maintain up-to-date versions of your programs as you
develop them. By keeping track of modifications to program source,
make can determine the need to recompile, reassemble, and/or relink
the files necessary to create an object file.

Using Make
The syntax for Make is as follows:
make options target! [target2] [macros]

The targe:] argument specifies the program that Make is to create.
Make accepts multiple arguments (zarget2, target3,...,and so on). The
macros argument lets you specify macros that Make uses when
creating the new target program.

The options argument can be one of the following:
-7 Displays the usage of Make.

-b Turns off built-in rules governing implicit file depend-
encies. Use this option if you are quite explicit about
your makefile dependencies and do not want Make to
assume anything.

-d Turns on the Make debugger and gives a complete listing
of the macro definitions, a listing of the files as it checks
the dependency list, and all the file modification dates.

Utilities Make Utility / 2

-fl[=lpath Specifies path as the makefile. If you omit this option,
Make searches for the file named Makefile in the current

directory.

-f causes Make to use the standard input instead of a
makefile.

-i Ignores errors. If you omit this option, Make stops

execution if an error code is returned after executing a
command line in a makefile.

-n Displays commands to standard output but does not
execute them.

-8 Executes command without echo (silent mode). If you
omit this option, Make echoes commands in the makefile
to standard output.

-t Touches the files. Make opens the file for update and
then closes it. This updates the modification dates
without executing the commands.

-u Causes Make to execute the makefile commands.
-X Uses the cross-compiler/assembler.
-z Reads a list of Make targets from standard input.

-z=path Reads a list of Make targets from path.

You can include options on the command line when you run Make or
include them in the makefile. You can also define one or more macros
on a command line instead of a makefile or to override a macro def-
inition in a makefile. Enclose in quotes any macro definitions that
contain spaces or other delimiters. See the following section
"Macros".

2-2

Utilities Make Utility / 2

Examples
make -f/d0/source/test.make -i test

This Make command creates a program called Test using the makefile
/d0/source/test.make. Make ignores any errors that occur.

make -s myprog

Make uses the file Makefile in the current directory as the makefile
for the program Myprog. Make does not echo commands during
execution.

What is a Makefile?

A makefile is a special type of procedure file that describes the
dependencies between files that make up the target program. The
makefile contains a sequence of entries that specifies dependencies
and commands to resolve the dependencies. A dependency entry
begins with the target name of the file or module followed by a colon
(:). This is then followed by a list of files that are prerequisites to
building the target file. This is called a dependency list.

In addition to the dependency entry, the makefile can contain
commands on how to update a particular target file (if it needs to be
updated). Make updates a target file only if it depends on files that
are newer than the target file. If Make cannot find the file, it assumes a
date of -01/00/00 00:00, indicating that the file needs updating. If you
do not specify update instructions, Make attempts to create a com-
mand line to perform the operation. Make recognizes a command line
because it begins with one or more spaces.

The following is a sample makefile:

program: Xxx.r yyy.r
CC XXX.ryyy.r -xf=program
xxx.r: xxx.c /d0/defs/oskdefs.h
€C: XXX.C -F
yyy.r: yyy.c /d0/defs/oskdefs.h

cc: yyy.c-r

2-3

Utilities Make Utility / 2

This makefile specifies that the target file program is made up of two
relocatable files (.r suffix): xxx.r and yyy.r. These files are dependent

upon xxx.c and yyy.c, respectively, and both files are dependent on the
file oskdefs.h.

If either xxx.c or /d0/defs/oskdefs.h has a more recent modification
date than xxx.r, Make executes the command cc xxx.c -r. Likewise, if
either yyy.c or /d0/defs/oskdefs.h has a more recent modification date
than yyy.r, Make executes the command cc yyy.c -r. If either of the
former commands is executed, Make also executes the command cc
XXX.I' yyy.r -xf=program.

Built-in Rules and Definitions

Make uses the following conventions when determining file types or
in defining its rules:

Source Files Files with a suffix of either .a, .c, .f, or .p are
source files in assembly, C, Fortran, and
Pascal, respectively.

Relocatable Files Make determines a file to be relocatable if it
has the suffix .r. Relocatable files are made
from source files and are assembled or
compiled, if necessary, during a make.

Object Files Make determines a file to be an object file if
the file does not have a suffix. An object file
is made from a relocatable file and is linked,
if necessary, during a make.

Default Compiler Make's default compiler is cc.

Default Assembler Make's default assembler is the Relocatable
Macro Assembler (RMA).

2-4

Utilities Make Utility | 2

Default Linker Make's default linker is cc. You should only
use the default linker with programs that use
Cstart.

Default Directory Make uses the current directory (.) for all
files.

Macros

You can use macros within a makefile or on the command line. Use
the following form to specify a macro:

macro-name=expansion

Make then substitutes every occurrence of macro-name with the
expansion.

Macro names are prefixed with the dollar sign character ($). If you
want to specify a macro name longer than a single character, you must
enclose the name in parentheses. For example, $R refers to the macro
R and $(PFLAGS) refers to the macro PFLAGS. The macro names
$(B) and $B refer to the same macro, B. The macro name $BR refers
to the B macro also, followed by the character R.

Note: If you define a macro in your makefile and then
redefine it on the command line, the command line definition
overrides the definition in the makefile. You might find this
feature useful for compiling with special options.

2-5

Utilities Make Utility / 2

Special Macros

Make provides the following special macros:

Macro Definition

SDIR=path Make searches the directory, specified by
path, for all implicitly defined source files.
If you do not define SDIR within the
makefile, Make searches the current
directory.

RDIR=path Make searches the directory, specified by
path, for all implicitly defined relocatable
files. If you do not define RDIR within the
makefile, Make searches the current
directory.

ODIR=path Make searches the directory, specified by
path, for all files that have no suffix or
relative pathlist (object files). The default is
the current execution directory.

CFLAGS=options Make uses the specified compiler options to
generate command lines.

RFLAGS=options Make uses the specified assembler options to
generate command lines.

LFLAGS=options Make uses the specified linker options to
generate command lines.

2-6

Utilities Make Utility / 2

Reserved Macros

Make expands the following macros when a command line associated
with a particular file dependency is forked. You might find these
macros useful when you need to be explicit about a command line but
have a target program with several dependencies. You can use these
macros only in a makefile command.

Macro Expands to:

$@ The name of the file to be made by the command

$* The prefix of the file to be made

$? The list of files that were found to be newer than the

target file on a given dependency line

Commands

You can specify more than one command for any dependency. Make
forks each command separately unless it is continued from the pre-
vious command (see Long Lines).

If you start a command line with the @ symbol, Make does not echo to
standard output. If you start a command line with a hyphen (-), Make
ignores any error codes returned on that line.

If your system runs out of memory while executing a command, you
can redirect the output of Make into a procedure file and execute the
procedure file.

Do not mix comments and commands.

2-7

Utilities Make Utility / 2

Comments

You can specify an entire line as a comment by placing an asterisk (*)
as the first character in that line. You can place comments at the end
of a line by preceding the comment with the pound sign character (#).

Make ignores blank lines within a makefile.

Long Lines

If you use lines longer than 256 characters or lines wider than your
screen, you need to place a space followed by a backslash (\) at the
end of each line to be continued. The continuation line must have a
space or tab as its first character.

For example:

Files : aaa.r bbb.r ccc.r ddd.r eee.r fff.r ggg.r\
hhh.r iii.r jjj.r

Make ignores leading spaces and tabs on non-command lines and
continuation lines.

How Make Works

Make starts by using the makefile to set up a table of dependencies.
When Make encounters a name on the left side of a colon, Make first
checks to see if it has encountered the name before. If Make has, it
connects the lists and continues. It treats every item on the right side
of the colon as a unique structure.

After reading the entire makefile, Make determines the target file (the
main file to be made) on the list. It then makes a second pass through
the subtable. It looks for object files that have no relocatable files in
their dependency lists and for relocatable files that have no source
files in their dependency lists.

Utilities Make Utility | 2

If Make needs to find any source files or relocatable files to complete
the dependency lists, it looks for them in the directory specified by the
macros SDIR and RDIR (or RDIR's default .). Make looks in these
directories for files with the same name as their dependent file. For
example, if no source file is found for program.r, Make searches the
specified directory (RDIR or.) for program.a (or .c, .p, .f).

Make does a third pass through the list to get the file dates and
compare them. When Make finds a file that is newer than its
dependent file, it generates the necessary command or executes the
command given. Since OS-9 only stores the time down to the closest
minute, Make remakes a file if its date matches one of its dependents.

Note: When Make generates a command line for the linker, it
looks at its list and uses the first relocatable file that it finds,
but only the first one. For example:

prog: x.r y.r z.r
generates the following:
CC Xx.r

It does not generate cc x.r y.r z.r OT cc prog.r

Notes about Make

If an object has more than one dependency, Make links the
dependency lists together. If the first dependency lists multiple
objects, then all the objects on that dependency line share the same set
of dependencies. This might or might not be correct, depending on
the situation. In the following example, the first makefile is correct,
and the second one creates some extra dependencies:

First makefile: x.r: defs.h

x.ry.r z.r. defs2.h
Second makefile: x.ry.rz.r: defs2.h

x.r: defs.h

2-9

Utilities Make Utility / 2

The first makefile specifies that xr is dependent on defs.h and defs2.h.
It specifies y.r and z.r as dependent on defs2.h.

The second makefile specifies that all three .r files are dependent on
defs2.h, and seems to specify only x.r as dependent on defs.h. Because
the second makefile lists all three .r files on the same dependency line,
they implicitly share in any future dependencies for any of the
individual files. Therefore, x.r, y.r, and z.r are all implicitly dependent
on defs.h.

Note: The Make language is very specific. Therefore, you
need to be careful when you use dummy files with names like
print. Unless a file is specifically an object file or you use the
-b option to turn off the implicit rules, use a suffix for your
dummy files (i.e. print.file and xxx.h for header files).

Examples of Makefiles

Example 1

program: xxx.r yyy.r
CC XXX.r yyy.r -xf=program
xxx.r yyy.r: /d0/defs/oskdefs

This example shows a shorter version of the makefile shown earlier in
this chapter. This example makes use of Make's awareness of file de-
pendencies. Because the makefile makes no mention of C-language
files, Make looks in the directory specified by the macro definition
SDIR=path (in this case, the default of the current directory) and
adjusts the dependency list accordingly. Make also generates a com-
mand line to compile xxx.r and yyy.r if one or both need updating.

2-10

Utilities Make Utility / 2

Example 2
program:

This simple makefile uses only one source file. Make assumes the
following from this simple command:

1. Because program has no suffix, Make assumes that it is in an
object file and therefore needs to rely on relocatable files to be
made.

2. Because there is no dependency list given, Make creates an entry
in the table for program.r.

3. After creating an entry for program.r, Make creates an entry for a
source file connected to the relocatable file.

If Make finds the file program.a, it checks the dates on the various
files and generates one or both of the following commands, if
required:

rma program.a -o=program.r (+ RFAGS if used)
cC program.r { + LFLAGS if used)

Example 3

* beginning

ODIR = /d0/cmds

RDIR =rels

UTILS = attr copy load dir backup dsave
SDIR = ../utils/sources

utils.files: $(UTILS)
touch utils.files

*end

2-11

Utilities Make Utility | 2

In this example, Make looks in the rels directory for attr.r, copy.r,
load.r, etc and looks in ../utils/sources for attr.c, copy.c, load.c and so
on. Make then generates the proper commands to compile and/or link
any of the programs that need to be made. If one of the files in the
utils directory is made, then Make forks the command touch util.tiles
to maintain a current overall date.

Example 4

* beginning

ODIR = /h0/cmds

RDIR = rels

CFILES = domake.c doname.c dodate.c domac.c
RFILES = domake.r doname.r dodate.r

R2 = ../test/domac.r

RFLAGS =-q
make: (RFILES) (R2) getfd.r
linker

$(RFILES): defs.h
$(R2): dets.h

cc $*.c -r=../test
print.file: (CFILES)

list $? >/p

touch print.file
*end

This example is a makefile to create Make. This makefile looks for
the .r files (listed in RFILES) in the directory specified by RDIR (rels).
The only exception is ../test/domac.r, which has a complete pathlist
specified.

Even though getfd.r does not have any explicit dependents, Make
checks its dependency on getfd.a. All of the source files are found in
the current directory.

2-12

Utilities Make Utility 1 2

Notice that you can use this makefile to make listings as well. By
typing make print.file on the command line, Make expands the macro
$? to mean all of the files that were updated since the last time
print file was updated. If you keep a dummy file called printfile in
your directory, it only prints out the newly made file. If no print.file
exists, Make prints all the files.

Example 5

See the makefile in the SOURCES directory of Disk 2 in the OS-9
Level Two Development Pack. This complete makefile is for use with
the updn.a and Isit.a examples in Chapter 11 of the "Relocatable
Macro Assembler"” section of this manual.

2-13

Chapter 3

Touch Utility

The Touch utility updates the last modification date of a file. This
command is especially useful when used inside a makefile with Make.
Associated with every file is the date that the file was last modified.
The Touch utility simply opens a file and closes it, thereby updating
the time that the file was last modified with the current date.

If Touch cannot find the specified file, it creates the file with the
current date as the modification date.

The syntax for Touch is:

touch options filename

The options include any of the following:

-7 Displays the usage of Touch

-C Does not create a file if Touch cannot find the
specified file

-q Does not stop execution if an error occurs

-X Searches the execution directory for the file

-z Reads the filenames from standard input

-z=path Reads the filenames from path

31

Utilities Touch Utility | 3

Examples

touch -¢ /h0/doc/program
Touch searches for the specified file but does not create it if it does
not exist.

touch -cz

Touch reads the filenames from standard input. If it cannot find a
specified file, Touch does not create it. [CTRL][BREAK] at the
beginning of a line signals Touch to terminage.

touch -z=filelist

Touch reads filenames from filelist, a file containing 1 filename on
each line.

3-2

Chapter 4

Virtual Disk/RAM Disk Driver

The Virtual Disk Driver is a high-speed, general storage/retrieval
system that uses your computer's memory to simulate a fast disk
device. You can use the VDD to store frequently used files (such as
OS9DEFS) and programs to cut down on floppy disk access time. The
Virtual Disk Driver uses two to six pages of system address space and
allocates the amount of RAM specified in the descriptor (RO).

The VDD system consists of two modules: RO (the VDD descriptor)
and RAM (the driver).

Initializing VDD

You can initialize the Virtual Disk Driver by issuing an I$Attach call
for RO or by opening or creating a file on RO. You can also use INIZ
to perform the I$Attach call. The syntax for INIZ is as follows:

inizr0

Note: Do not use I$Open and I$Create to initialize VDD even
though they both do an implicit I$Attach, because the I$Close
call does an implicit I$Detach. If an I$Attach call is not made
before the file is opened, all data in the RAM disk is lost when
the file is closed.

When VDD is initialized, it obtains information about the total amount
of memory it is to allocate and the system memory block size from the
descriptor. VDD then initializes Sector zero, the bit map, and the root
directory. Once the Ram Disk is initialized, you can treat RO like any
other disk device.

4-1

Utilities Virtual Disk/RAM Disk Driver

RO is a standard RBF device descriptor. You can choose the amount
of RAM used by VDD by changing the default sectors per track
(module offset $1B). To do so, use the debugger or reassemble RO
with the desired alteration. The size that VDD uses can be changed by
altering the number of surfaces (module offset $19).

Your development diskettes contain three versions of R0, a 96
kilobyte version, a 128 kilobyte version, and a 192 kilobyte version.
You can only use one version at a time.

4-2

Utilities

Index

access time, disk 4-1

arguments, macros 2-1

assembler 2-4
options 2-6

blank lines (Make) 2-8

CFLAGS (Make macro) 2-6
comments (Make) 2-8
compiler 2-4

options (Make) 2-6
cross-compiler/assembler (Make) 2-2
create file (Touch) 3-1

date, modification 3-1
debugger (Make) 2-1
default

assembler 2-4

compiler 2-4

directory 2-5

linker 2-5
dependencies 2-3, 2-9
dependency, line 2-7
directory 2-5

search 2-6
disk

access time 4-1

driver, virtual 4-1-4-2
displaying commands (Make) 2-2
dollar sign (Make) 2-5

Utilities Index

echoing commands (Make) 2-2

error (Touch) 3-1

error codes 2-7

errors, ignoring (Make) 2-2

execution directory, searching (Touch) 3-1

file
dates 2-3
dependencies 2-1, 2-3, 2-9
prefix 2-7
file touching 2-2
filename 2-7
filenames (Touch) 3-1
files
object 2-4
relocatable 2-4
source 2-4

initializing VDD 4-1

leading spaces (Make) 2-8
LFLAGS (Make macro) 2-6
line width 2-8
linker 2-5

options (Make) 2-6

macros 2-2, 2-5-2-7
arguments 2-1
reserved 2-7
special 2-6

maintain program 2-1 - 2-13

Utilities

Index

Make 2-1-2-13
conventions 2-4 - 2-5
debugger 2-1
language 2-10
macros 2-5-2-7
options 2-1-2-2
targets 2-2

makefile 2-2
path 2-2

modification date
Make 2-4
Touch 3-1

modifications 2-1-2-13

object files 2-4
ODIR (Make macro) 2-6
options
assembler 2-6
Make 2-1-2-2
compiler 2-6
linker 2-6

procedure file 2-3

program maintenance 2-1 -2-13

RAM driver 4-1-4-2
RDIR (Make macro) 2-6

redirecting output (Make) 2-7

relocatable files 2-4

reserved macros (Make) 2-7
RFLAGS (Make macro) 2-6

SDIR (Make macro) 2-6

searching the directory 2-6

source files 2-4

Utilities

Index

standard input
Make 2-2
Touch 3-1
standard output (Make) 2-7

target file, updating 2-3
Touch 3-1-3-2
touching files 2-2

virtual disk 4-1-4-2

Commands

Contents

Chapter 1 / INtroduCtionc.ceoceeevirnrereenernneenieeseceersresesie e 1-1
Chapter 2/ Command Referenceccecvvmereeernrererencnsreerercnvrnneones 2-1
BINEX ...otiiiiiirieieereecieineesiesesetenesssetseasaes et sesasissntsesssestsssssnsseesees 2-1
DUMP ...ttt eeistsssseesaesstesases et se et erssnssessssssensaessenss 2-3
EXBIN Lottt esestesase e st et sse et raset et rasoesass 2-6
LOGIN ettt ettt et eeneiesseasseneacs 2-7
MODPATCH ...ttt et saenns 2-10
MONTYPE ...ooiiiirniiictenieeetetnirecieietsaseseaessestseeessse e s asssssacsens 2-14
PARK L.ttt tsssss st sas et st sb sttt nsas s 2-16
SAVE Lottt etieant et et 2-18
SLEEP ...oieiiceirieeretstienseeeeeeteestaesseis it sstnasescaessesscssaesseasassen 2-19
TEE oottt ettt sttt et saeaen 2-21
TSMON .ottt st ettt et st 2-23
VERIEFY ..ottt ssesin sttt st seas s sasones 2-24

Chapter 1

Introduction

The CMDS directory of Disk 1 in the OS-9 Level Two Development
System contains several commands to help in system operations.
These commands and their functions are:

Command Function

BINEX Converts a binary file into an S-Record file

DUMP Displays the physical data contents of a file or
device in both ASCII and hexadecimal form

EXBIN Converts an S-Record file into its binary form

LOGIN Provides login security on timesharing systems

MODPATCH Modifies modules residing in memory

MONTYPE Sets a system for the specified type of monitor

PARK Moves the heads of a hard disk in preparation for
moving the drive unit

SAVE Creates a file and writes a copy of the specified
memory module(s) into the file

SLEEP Suspends a process for a specified time

TSMON Supervises idle terminals and initiates login

TEE Copies standard input to multiple devices

VERIFY Checks module header parity and CRC values

1-1

Chapter 2

Command Reference

BINEX
Syntax: binex filenamel filename?2
Function: Converts a binary file into an S-Record file.
Parameters:
filenamel The name of the file to convert
filename?2 The name of the file in which to store the
converted code
Notes:

e Binex converts the specified OS-9 binary file (filenamel) to
an S-Record file and gives the new file the name specified by
filename2. If filenamel is a non-binary load module file, OS-9
prints a warning message and asks you if BINEX should
proceed anyway. Press Y to continue with the conversion.
Pressing any other key causes BINEX to terminate.

2-1

Commands Command Reference / 2

e When you run BINEX, the program asks you for a program
name and a starting load address. It stores this information in
a header record. Although OS-9 is position independent and
does not require absolute addresses, S-Record files do. The
following example illustrates a BINEX command, its prompts,
and possible user input.

binex /d0/cmds/scanner scanner.s1 [ENTER]

Enter starting address for file:
$100 [ENTER]

Enter name for header record:
scanner [ENTER]

e To download the Scanner.sl file to a device (such as a PROM
programmer) using serial port /T1, type:

list scanner.s1 >/t1 [ENTER]

e An S-Record is a type of text file that contains records
representing binary data in hexadecimal character form. Most
commercial PROM programmers, emulators, logic analyzers,
and similar RS-232 devices can directly accept this Motorola-
standard format. You can also use S-Record files to transmit
data over data links that can only handle character-type data
or to convert OS-9 assembler- or compiler-generated pro-
grams to load on non-0OS-9 systems.

Example:

To convert a binary file named Zap to an S-Record file named Zap.sr,
type:
binex /d0/cmds/zap /d1/sr/zap.sr

Commands Command Reference / 2

DUMP
Syntax: dump [name]
Function: Displays the physical data contents of the specified

file or device in both ASCII and hexadecimal form .

Parameter:

name Either a file pathlist or a device name

Notes:

e If you do not specify a file or device, DUMP displays the
standard input path (the keyboard). Dump writes output to the
standard output path (the video display).

e Use DUMP to examine the contents of non-text files.

e The DUMP display adjusts to the type of screen you are
using. In 32- and 40-column screens, DUMP displays eight
bytes per line. In 80-column screens, DUMP displays 16 bytes
per line.

e DUMP displays data in both hexadecimal and ASCII
character format. If data bytes have non-displayable values,
DUMP displays them as periods (.).

¢ The addresses displayed by DUMP are relative to the
beginning of the file. Because memory modules are position-
independent and are stored in files exactly as they exist in
memory, the addresses shown on the dump correspond to the
relative load addresses of memory-module files.

Commands Command Reference | 2

Examples:

To display keyboard input in hex on the screen, type the following
command. Press [CTRL][BREAK]to return to the shell.

dump [ENTER]

Then, to display the contents of the diskette in Drive /D1, type:
dump @/d1 [ENTER]

The @ symbol causes OS-9 to treat the entire disk as a file.

Sample output, 32 columns:

DUMP SYS/password >/P [ENTER]

ADDR

0000
0008
0010
0018
0020
0028
0030
0038

ADDR

0040
0048
0050
0058
0060
0068
0070

01234567
89 ABCDETF
+ot—t—t—t—t—t—t-
2C2C302C3132382C
2F44302F434D4453
2c2p2c5348454c4C
0D55534552312¢C2C
312¢3132382C2E2C
2E2C5348454C4C0D
55534552322C2C32
2C3132382c232¢c23
01234567
8 9ABCDETF
e e e
2€5348454C4C0D55
534552332Cc2C332C
3132382C232C2E2C
5348454C4C0D5553
4552342c2¢342¢31
32382C2E2C2E2C53
48454C4c0D

0246

8 ACE

+ + + +

1101128/
/D0O/CMDS
, .,SHELL
.USER1, ,
1,128, .,
., SHELL.
USER2, , 2
, 128, .,.

0246
8 ACE
+ + + +
,SHELL.U
SER3, , 3,
1281-1-1
SHELL.US
ER4, ,4,1
28I-I-IS
HELL.

2-4

Commands Command Reference | 2

The first column indicates the starting address. The next eight
columns (00-EF) display data bytes in hexadecimal format. The final
column (0-E) displays data byes in ASCII format. The display shows
non-ASCII as periods in the ASCII character display section.

Sample output, 80-columns:

DUMP SYS/password >/P [ENTER]

ADDR 01 23 45 67 89 AB CD EF 02468ACE

0000 2C2C 302C 3132 382C 2F44 302F 434D 4453 ,,0,128,/DO/CMDS
0010 2C2E 2C53 4845 4c4C OD55 5345 5231 2c2Cc , ., SHELL.USERIL,,
0020 312C 3132 382C 2E2C 2E2C 5348 454C 4CcOD 1,128, .,.,SHELL.

0030 5553 4552 322C 2C32 2C31 3238 2C2E 2C2E USER2,,2,128,.,.
0040 2C53 4845 4C4C OD55 5345 5233 2C2C 332C , SHELL.USER3,, 3,
0050 3132 382C 2E2C 2E2C 5348 454C 4COD 5553 128,.,.,SHELL.US
0060 4552 342C 2C34 2C3A 3238 2C2E 2C2E 2C53 ER4,,4,128,.,.,8
0070 4845 4cC4cC OD HELL.

2-5

Commands Command Reference | 2

EXBIN
Syntax: exbin filenamel filename2
Function: Converts an S-Record file into its binary form
Parameters:
filenamel The name of the file to convert
filename2 The name of the file in which to store the
converted code
Notes:

o EXBIN is the inverse operation of BINEX. It assumes the file
specified by filenamel is an S-Record format text file and
converts it to a pure binary form in the file specified by
filename2. The load addresses of each data record must
describe contiguous data in ascending order.

e EXBIN does not generate or check for the proper OS-9
module headers, the header CRC check value, or the module
CRC check value required to load the binary file. Use the
IDENT or VERIFY commands to check the validity of the
modules.

Examples:

e To convert an S-Record file named Program.s! to a binary file
named Program and store it in the commands file of the
current diskette, type:

exbin program.s1 cmds/program [ENTER]

Commands Command Reference | 2

LOGIN

Syntax:

login

Function: Provides login security on timesharing systems. LOGIN
automatically adjusts its output for 32- or 80-column displays.

Parameters: None

Notes:

The timesharing monitor, TSMON, automatically calls
LOGIN. You can also use LOGIN after initial login to change
a terminal's user.

LOGIN requests your name and password, which it checks
against a validation file. If the information is correct, LOGIN
sets up your system priority, ID, and working directories
according to information stored in the file. Then, LOGIN
executes the initial program (usually shell) specified in the
password file.

The LOGIN process terminates if you cannot supply a correct
user name and password after three attempts.

The validation file is /DD/SYS/password. The file contains
one or more variable-length text records, one for each user
name. Each record has the following fields (the file uses
commas as delimiters):

User name. The name can be a maximum of 32 characters,
including spaces. If the name field is empty, any name
matches.

Password. The password can be a maximum of 32 characters,
including spaces. If the password field is blank, the system
does not require the record’s owner to type a password.

2-7

Commands Command Reference | 2

User index. This is the user ID number. It can be in the range
0 to 65535 (0 is the superuser or system manager). Both the
file security system and the system-wide user ID use this
number to identify all processes initiated by the user. The
system manager should assign a unique ID to each potential
user.

Priority. This is the initial process (CPU time) priority. It can
be in the range of 1 to 255.

Execution Directory. This is a pathlist showing the name
and location of the initial execution directory (usually
/DO/CMDS).

Working Directory. This is a pathlist showing the name and
location of the initial data directory (the specific user's
directory). The initial data directory is usually the ROOT
directory.

Execution Program. This is the name of the initial program
to execute (usually shell). Do not use shell command lines,
such as DIR or DCHECK, as initial program names.

e Here is the system default validation file:

»0,128,/DO/CMDS,.,SHELL
USER1,,1,128,.,.,,.SHELL
USER2,,2,128,.,.,.SHELL
USER3,,3,128,.,.,.SHELL
USER4,,4,128,.,.,,SHELL

In this sample, the superuser's record, the first entry, contains
no user name or password. The ID number is 0, the initial
process priority is 128, the execution directory is /DO/CMDS,
and the ROOT directory is the initial data directory. The
initial program to execute is shell. The second entry is the
same except the user's name is the default USER1.

2-8

Commands Command Reference / 2

To use LOGIN, type:
login [ENTER]

Prompts ask for your name and (optionally) a password. If
you answer correctly, the system completes your login.
LOGIN initializes the user number, working execution
directory, the working data directory, and executes a
specified program. It displays the date, time, and process
number. LOGIN adjusts its output format for 80- or 32-
column displays.

To kill the shell that called LOGIN, use EX. For example:
ex login [ENTER]
Use the OS-9 text editor to edit Password and add users.

Logging off the system terminates the program specified in
the password file. For most programs (including shell)
logging off involves typing an end-of-file character
(ICTRL][BREAK]) as the first character on a line.

If Motd exists in the SYS directory, LOGIN displays its
contents (after a successful login).

Examples:

Following is possible user input and the screen display during LOGIN.

[ENTER]

0S-9 Timesharing system
Level Il RS VR. 02.00.01
87/04/10 08:35:44

User name?: superuser [ENTER]

Password: secret [ENTER] (your entry does not
Process #07 logged on 87/04/10 08:36:01 appear on the screen)
Welcome!

LOGIN then displays a message of the day from the Motd file.

2-9

Commands Command Reference | 2

MODPATCH

Syntax: modpatch [options] filename [options]

Function: modifies modules residing in memory.
MODPATCH reads a file and executes the
commands in the file to change the contents of
one or more modules.

Parameters:

Jilename The name of a file containing instructions for
MODPATCH

options One of the following options that change
MODPATCH's function

Options:

-S Silent mode, does not display patchfile command
lines as they are executed.

-w Does not display warnings, if any

-C Compares only, does not change the module

2-10

Commands Command Reference / 2

Notes:

Before using MODPATCH, you must create a patchfile to
supply the data to control MODPATCH's operation. This file
contains single-letter commands and the appropriate module
addresses. The commands are:

1 modulename Link to the module specified by
modulename.
c offset origval newval Change the byte at the offset

address specified by offset from
the value specified by origval to
the new value specified by
newval. If the original value
does not match origval,
MODPATCH displays a
message.

v Verify the module--update the
modules CRC . If you plan to
save the patched module to a
file that the system can load,
you must use this command.

m Mask IRQ's . Turns off interrupt
requests (for patching service
routines).

u Unmask IRQ's. Turns on

interrupt requests (for patching
service routines).

You can use the BUILD command or any word processing
program to create patchfiles.

Module byte addresses begin at 0. MODPATCH changes
values pointed to by an offset address (offset from 0) rather
than an absolute memory address.

2-11

Commands Command Reference | 2

e To view the contents of a memory module, use SAVE and
DUMP to copy the module to a file and display its contents.
Also use SAVE to copy the patched module to a disk file.

e Changing a memory module might not produce an immediate
effect. You have to duplicate the initialization procedure for
that module. This means, if the module loads during bootup,
you have to create a new boot file that includes the changed
module, then reboot using the new boot file.

e To use the patched module in future system boots, use SAVE
to store the module in the MODULES directory of your
system disk. You can then use OS9GEN to create a new
system disk using the patched module. If you are using the
patched module to replace another module, rename the
original module and then give the patched module the
original name.

e If you patch a module that is loaded during the system boot,
you can use COBBLER to make a new system boot that uses
the patched module.

Examples:

The following example shows the commands, the screen prompts, and
the entries you make to patch the standard 40-column term window
descriptor to be an 80-column screen rather than the standard 40-
column screen:

0S9: build termpatch [ENTER]
2 I term [ENTER]

2 ¢ 002¢ 28 50 [ENTER]

2 ¢ 0030 01 02

2 v [ENTER]

2 [ENTER]

0S9: modpatch termpatch [ENTER]

2-12

Commands Command Reference | 2

To change the size, columns, and colors of Device Window W1, create
the following procedure file and name it W180:

| wi

¢ 0030 01 02
¢ 002c 1b 50
¢ 002d Ob 18

If the W1 module is not already in memory, load it from the
MODULES directory of your system disk. Then, before initializing
W1, run MODPATCH:

modpatch w180 [ENTER]

Next, initialize W1:
iniz w1 [ENTER]
shell i=/w1& [ENTER]

Press [CLEAR] to display the new window with 80 columns, 24 lines,
and a white background.

2-13

Commands Command Reference / 2

MONTYPE

Syntax: montype type

Functipn: Sets your system for the type of monitor you are
using

Parameters:

type A single letter indicating the monitor type:
¢ for composite monitors or color televisions
r for RGB monitors

m for monochrome monitors or black and white
televisions

Notes:

e Different types of color monitors display colors differently. For
the best results, set your system to the type of monitor you are
using.

e If you are using a monochrome monitor or black and white
television, you can obtain a sharper image by setting your monitor
type to monochrome.

e Include the MONTYPE command in your system's Startup file to
automatically boot in the proper monitor mode.

e If you do not use MONTYPE, the system defaults to ¢ (composite
monitor).

Example:

To set your system for an RGB monitor, type:

montype r [ENTER]

2-14

Commands Command Reference | 2

To add a MONTYPE command to your existing Startup file, first use
BUILD to create the new command. For example:

build temp [ENTER]
montype r [ENTER]
[ENTER]

Next, append the file to Startup. Type:

merge startup temp > startup.new [ENTER]

Delete the temp file:

del temp [ENTER]
To enable the system to use Startup.new when booting, rename the
original Startup file:

rename Startup Startup.old

Then rename Startup.new:

rename Startup.new Startup

2-15

Commands Command Reference | 2

PARK
Syntax: park drive
Function: Moves the heads of a hard disk to the innermost

tracks in preparation for moving the drive unit.

Parameters:
drive The hard disk drive for which you want to park
the heads
Notes:
e Jarring your hard disk can cause its recording heads to bump

against the highly polished surface of the recording media,
destroying stored data. Such jarring can easily happen when you
move your hard disk drive.

PARK moves all of your disk's recording heads onto the
innermost tracks where information is not stored, and where such
inadvertent bumping cannot destroy data.

Always use PARK before relocating your hard disk or anytime
you think it might be bumped or jiggled.

After running PARK, turn off the system. Wait at least 15 seconds
before turning on the power again. When you do turn your system
on, the hard disk is immediately ready for use.

Your hard disk is a precision instrument, built to extremely close
tolerances. Always handle it carefully, even after parking its
heads.

2-16

Commands Command Reference [2

Example:
To park the heads of your hard disk, type:
park /h0 [ENTER]

2-17

Commands Command Reference | 2

SAVE
Syntax: save filename modname |...]
Function: Creates a file and writes a copy of the specified

memory module(s) into the file

Parameters:
filename Is the name of the file you want to create
modname Secifies one or more modules to include in the
file
Notes:

e The module name(s) must exist in the module directory when
SAVEd. SAVE gives the new file all access permission except
public write.

e SAVE's default directory is the current data directory.
Generally, you should save executable modules in the default
execution directory.

® You can use SAVE to create a file of the commands you use
most often so that you can load all of these commands using
only one filename.

Examples:

To save a module named Wcount into a newly created file called
Workcount in the /DO/CMDS directory, type:

save /d0/cmds/workcount wcount [ENTER]

The following command saves four modules (add, sub, mul and div)
into the new file called /D1/Math_pack.

save /d1/math_pack add sub mul div [ENTER]

2-18

Commands Command Reference | 2

SLEEP
Syntax: sleep tickcount
Function: Puts a process to sleep for the specified number of

clock ticks

Parameters:

Tickcount Can be any number in the range 1 to 65535

Notes:

e If you give SLEEP a value larger than 65535, OS-9 reduces
the value by mod 65536. For example, 65536, and all the
multiples of 65536, become 0. A tick count of 95000 becomes
an actual tick count of 29464,

In other words, if you give SLEEP a value higher than 65535,
it reduces tickcount by subtracting the closest multiple of
65536 that is lower than your value.

e Use SLEEP to generate time delays or to break up jobs
requiring a large amount of CPU time. The duration of a tick
is 16.66 milliseconds.

e A tick count of 1 causes the process to give up its current time
slice. A tick count of 0 causes the process to sleep
indefinitely. (A signal sent to the process awakens it.)

Examples:

The following command puts the process zo sleep for 25 ticks (416.50
milliseconds):

sleep 25 [ENTER]

2-19

Commands Command Reference | 2

The following command sequence causes LIST to start running as a
child process invoked from the shell, and as a background task.
SLEEP then puts the shell to sleep indefinitely. When LIST attempts to
find the file Nothing, which does not exist, it terminates and sends a
signal (the error status), which wakes up the shell.

list startup sys/motd nothing & sleep 0

A sample screen display follows:

&004
setime </term

WELCOME TO COLOR COMPUTER 0S-9
-004
ERROR #216

08s9:
If an error does not occur, the shell continues to sleep. (Use [BREAK]

to wake the shell. Any keys you pressed while the shell was asleep are
then displayed.

2-20

Commands Command Reference | 2

TEE
Syntax: tee pathlist or devname [...]
Function: Copies standard input to multiple devices
Parameters:
pathlist Is one or more paths for the input data to follow
devname Is one or more devices to which the system

directs the input data

Options: TEE can send output to any number of devices specified by
devname.

Notes: TEE is a filter that copies all text lines from its standard input
path to the specified output paths.

Examples:

The following command line uses a pipeline and TEE to send the
output listing of DIR simultaneously to the terminal, the printer, and a
disk file:

dir e ! tee />p /d0/dir.listing

Here, a pipeline takes the output of DIR E and sends it to the terminal
and TEE. TEE in turn sends the output to the printer and to a file called
/DO0/Dir listing.

2-21

Commands Command Reference | 2

In the following example, the pipeline and TEE send the output of an
assembler listing to a file (Pgm.list) and to the printer.

asm pgm.src | ! tee pgm.list /p [ENTER]

The next example broadcasts a2 message to the terminal.

echo WARNING SYSTEM DOWN IN 10 MINUTES ! tee />t1 [ENTER]

2-22

Commands Command Reference / 2

TSMON
Syntax: tsmon [devrame]
Function: Supervises idle terminals and initiates the login

sequence for timesharing applications

Parameter:
devname Is the device for which you want login and
supervision capabilities
Notes:

e If you specify a devname, TSMON opens standard 1/O paths
for that device. When you enter a carriage return, TSMON
automatically calls the LOGIN command. If the LOGIN fails
because the user cannot supply a valid user name or
password, control returns to TSMON. The LOGIN command
and its password file must be present for TSMON to work
correctly. (See the LOGIN command description.)

e Logging Off the System: Most programs terminate when you
enter an end-of-file marker ([CTRL][BREAK]) as the first
character on a command line. Pressing [CTRL][BREAK] causes
your terminal to log off the system and to return to TSMON.
TSMON runs the login sequence again when you press
[ENTER].

Examples:
The following command line activates /T1.

tsmon /t1& [ENTER]

The command must run concurrently in order to keep /TERM active.

2-23

Commands Command Reference | 2

VERIFY
Syntax: verify [u] < filenamel [>filename2]
Function: Checks to see if the module header parity and CRC

value of one or more modules on a file are correct

Parameters:
filenamel Is the name of the module to be checked
filename?2 Is the name for the verified module created with
the u option
Options:

u (update) copies the module(s) to a new module with the header
and parity and CRC values replaced with VERIFY's
computed values

Notes:

o VERIFY reads module(s) from the standard input and sends
output to the standard output. It sends messages to the
standard error path.

e VERIFY is dependent on the input redirection command. If
you fail to use the redirection symbol, VERIFY causes the
system to lock. To gain control of the system, press [BREAK].
You must always redirect the input path. If you use the u
option, you must also redirect the output to the new file you
want to create.

e Using the u (update) option causes VERIFY to copy the
module(s) to the standard output path with the module's
header parity and CRC values replaced with new computed
values. VERIFY, with the update option, does not set the
execute flag in the file attributes. Use ATTR to do this.

2-24

Commands Command Reference | 2

e If you do not use the u option, VERIFY does not copy the
module to standard output. VERIFY displays a message
indicating whether the module's header parity and CRC match
those computed by VERIFY.

Examples:

Because the following command line uses the u option, VERIFY
copies the edit module to a new module, Newedit, with the header
parity and CRC values replaced with VERIFY's computed values.

verify u </d0/cmds/edit >/d0/cmds/newedit [ENTER]
The next command line checks the edit module. Because the command

does not specify the u option, VERIFY only displays a summary
message.

verify <edit [ENTER]

A possible screen display is:

Header parity is correct
CRC is correct

In the next command line, VERIFY checks Myprogram?2, an invalid
module. Because the command does not specify the u option, VERIFY
does not copy the module to standard output, but displays a message.

verify <myprogram2 [ENTER]

The screen displays:

Header parity is INCORRECT!
CRC is INCORRECT!

2-25

Commands

Index

ASCII, file contents 2-3

binary file
converting to S-Record 2-1 - 2-2
converting from S-Record 2-6
BINEX command 2-1 -2-2
BUILD command 2-11, 2-15

changing modules 2-10 - 2-13

clock ticks 2-19

COBBLER command 2-12

command list 1-1

commands, patchfile 2-11

contents, file 2-3 - 2-5

converting binary to S-Record/binary 2-1 -2-2
converting S-Record to binary 2-6

CPU time 2-8

CRC value 2-24 -2-25

devices, copying input to 2-21 - 2-22
DIR command 2-21
directory
execution 2-8
SYS 2-9
working 2-8
DUMP command 2-3 - 2-5,2-12

emulators 2-2
EX command 2-9
EXBIN command 2-6

Commands Index

execution
directory 2-8
program 2-8

file contents 2-3 - 2-5

File conversion, binary/S-Record 2-1 - 2-2
File, displaying contents 2-3 - 2-5

filter, TEE 2-21 - 2-22

hard disk, parking heads 2-16
hexadecimal form, file contents 2-3

input, standard 2-21 - 2-22

LIST command 2-20
logic analyzers 2-2
LOGIN command 2-23, 2-7 - 2-9

memory modules, saving 2-18
modifying module 2-10-2-13
module header parity, checking 2-24 - 2-25
modules

modifying 2-10 - 2-13

saving from memory 2-18

updating 2-24
MODULES directory 2-12
monitor, setting type 2-14 - 2-15
monochrome monitors 2-14
MONTYPE command 2-14 - 2-15

non-text files 2-3
OSI9GEN command 2-12
parity, module header 2-24 - 2-25

PARK command 2-16 - 2-17
password (LOGIN) 2-7

Commands

Index

patchfile commands 2-11
paths 2-21 -2-22

pipeline (TEE) 2-21 - 2-22
priority 2-8

process, putting to sleep 2-19
PROM programmers 2-2

reference, commands 1-1
RGB monitors 2-14

S-Record

from binary 2-1-2-2

to binary 2-6
SAVE command 2-12, 2-18
saving memory module 2-18
security, login 2-7 - 2-9
shell, killing 2-9
SLEEP command 2-19 - 2-20
standard

I/O paths 2-23

input 2-21-2-22
Startup file 2-15
suspending processes 2-19
SYS directory 2-9

TEE command 2-21 -2-22
television 2-14

terminal, supervising 2-23
tick count 2-19

timesharing 2-7 - 2-9, 2-23
TSMON command 2-23
types of monitor 2-14 - 2-15

updating modules 2-24
user index (LOGIN) 2-8

Commands Index

validation file (LOGIN) 2-7
VERIFY command 2-24 - 2-25

working directory 2-8

RADIO SHACK
A Division of Tandy Corporation
Fort Worth, Texas 76102

5/87-5WCG BHr4-28016 Prirckad in US.A

	Contents
	Interactive Debugger
	Contents
	Chapter 1 - Introduction
	Calling Debug
	Basic Concepts

	Chapter 2 - Expressions
	Constants
	Special Names
	Register Names
	Operators
	Indirect Addressing
	Forming Expressions

	Chapter 3 - Debug Commands
	Calculator Commands
	Dot and Memory Examine/Change Commands
	Decrementing Dot
	Changing Dot
	Changing Dot's Contents

	Register Examine/Change Commands
	Breakpoint Commands
	Setting Breakpoints
	Removing Breakpoints

	Program Setup and Run Commands
	GOTO Command
	LINK Command

	Utility Commands
	Clearing Memory
	Displaying Memory
	Searching Memory
	Shell Command
	Quitting Debug

	Chapter 4 - Using Debug
	Sample Program
	Using Debug

	Patching Programs
	Patching OS-9 Component Modules

	Chapter 5 - Debug Command Summary and Error Codes
	Debug Command Summary
	Register Commands
	Program Setup and Run Commands
	Breakpoint Commands
	Utility Commands

	Debug Error Codes

	Index

	Screen Editor
	Contents
	Chapter 1 - Introduction
	Modes of Operation
	Starting Scred
	Available Options

	Chapter 2 - The Termset File
	Modifying the Termset File
	The Termset File Format
	Termset Fields
	Examples

	Chapter 3 - Command Mode
	Changing to the Edit Mode
	Changing to the Insert Mode
	Manipulating the Edit Buffer
	Saving Text
	Removing Text
	Searching for Strings
	Changing Strings
	Using Wild Cards
	Miscellaneous Commands

	Exiting Scred

	Chapter 4 - Edit Mode
	Getting Help
	Controlling the Cursor
	Scrolling the Screen
	Moving to a Specific Line
	Finding a String
	Replacing Strings
	Deleting Text
	Inserting or Replacing a Single Character
	Cutting and Pasting
	Editing Lines
	Displaying the Status Line

	Chapter 5 - Insert Mode
	Chapter 6 - Quick Reference
	Command Mode
	Edit Mode
	Cut and Paste Commands

	Insert Mode

	Index

	Relocating Macro Assembler
	Contents
	Chapter 1 - Introduction
	Installation
	Using the RMA
	Available Options

	Chapter 2 - General Information
	Source File Format
	The Label Field
	The Operation Field
	The Operand Field
	The Comment Field

	The Assembly Listing Format
	Evaluation of Expressions
	Expression Operands
	Expresion Operators
	Symbolic Names
	Symbolic Names for System Calls

	The DEFS Directory
	The LIB Directory

	Chapter 3 - Macros
	Macro Structure
	Macro Arguments
	Special Arguments

	Automatic Internal Labels
	Documenting Macros

	Chapter 4 - Program Sections
	Program Section Declarations

	Chapter 5 - Program Section Directives
	PSECT Directive
	VSECT Directive
	CSECT Directive

	Chapter 6 - Assembler Directive Statements
	END Statement
	EQU and SET Statements
	FAIL Statement
	IF, ELSE, and ENDC Statements
	NAM and TTL Statements
	OPT Statement
	PAG and SPC Statements
	REPT and ENDR Statement
	RMB Statement
	USE Statement

	Chapter 7 - Psuedo-Instructions
	FCB and FDB Statements
	FCC and FCS Statements
	RZB Statement
	OS9 Statement

	Chapter 8 - Accessing the Data Area
	Using Non-Initialised Data
	Using Initialized Data

	Chapter 9 - Using the Linker
	Running the Linker
	Available Options

	Chapter 10 - Error Messages
	Chapter 11 - Examples
	Appendix A - 6809 Instructions and Addressing Modes
	Index

	Utilities
	Contents
	Chapter 1 - Introduction
	Chapter 2 - Make Utility
	Using Make
	What is a Makefile?
	Built-in Rules and Definitions
	Macros
	Special Macros
	Reserved Macros
	Commands
	Comments
	Long Lines

	Notes about Make
	How Make Works
	Examples of Makefiles

	Chapter 3 - Touch Utility
	Chapter 4 - Virtual Disk/RAM Disk Driver
	Initializing VDD

	Index

	Commands
	Contents
	Chapter 1 - Introduction
	Chapter 2 - Command Reference
	BINEX
	DUMP
	EXBIN
	LOGIN
	MODPATCH
	MONTYPE
	PARK
	SAVE
	SLEEP
	TEE
	TSMON
	VERIFY

	INDEX

